Christian Duriez, head of DEFROST team Research director at INRIA, FRANCE

JNRH 2020

PHYSICS-BASED MODELING OF DEFORMABLE ROBOTS FOR REAL-TIME SIMULATION AND CONTROL

WHY SOFT ROBOTICS ?

- In nature, bodies are made with soft parts...
 - Is it an advantage in term of design ? it depends on the environment, the task etc...

Is it too complex or too simple ?

human skeleton: 11% of the body mass skeletal muscles: 42% of the body mass

WHAT IS A « SOFT-ROBOT » ?

Use of soft materials

Warein Robotics

WHAT IS A « SOFT-ROBOT » ?

- Use of soft materials
- Deformable structure

DEFINING SOFT ROBOTICS

Two « definitions » in the literature

Compliant Joints (but still articulated rigid structure)

- mechanically (or passively) compliant joints with variable stiffness
- compliance or impedance control

Deformable structure

(the motion of the robot is created by deformation)

- Robots made of soft materials or structures that undergo high deformations in interaction
- Soft actuators and soft components

DEFINING SOFT ROBOTICS

Compliant mechanisms

definition: **compliant mechanisms** are flexible mechanisms that transfer an input force and displacement at one port to an output force and displacement at another port through elastic body deformation.

PIONEERING WORK

- [Mol78] Molaug, O. (1978). Flexible robot arm U.S. Patent No. 4,107,948. Washington, DC: U.S. Patent and Trademark Office.
- [Hir78] Hirose, S., & Umetani, Y. (1978). The development of soft gripper for the versatile robot hand. Mechanism and machine theory, 13(3), 351-359.

Link with 3D printing

Neri Oxman, MIT

3D printing of Silicone

Oregon State University

Mesostructured material

This paper open up a new way of designing soft robots with anisotropic behaviors

Vanneste et al. RAL (ICRA) 2020

Bio-inspiration

Octopus has inspired many groups in soft robotics

SUMMARY

- Introduction
 - Why soft robotics ?
 - What is soft robotics ?
 - Why now?
- Design
 - Bio-inspiration
 - Soft-robot technology
 - Morphological computation
- Modeling and simulation
 - FEM simulation in real-time
 - Constraint-based modeling
- Control methods
 - Inverse kinematics
 - Sensing & Closed-loop control
- Perspective / Conclusion

DESIGN

- Bio-inspiration
- Soft-robot technology
- Structure and optimisation

BIOINSPIRATION AND BIOMIMETICS

- Elephant trunk
 - Ian Walker, Clemson University

Walker, Ian D., and Michael W. Hannan. "A novel'elephant's trunk'robot." Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on. IEEE, 1999.

Elephant trunk

Festo

Festo, INC. Bionic handling assistant -flexible and compliant movement. https://www.festo.com/group/en/cms/10241.htm

- Fish
 - Compliant body motion to undulate and move

Fish

MIT

https://www.csail.mit.edu/research/sofi-soft-robotic-fish

BIOINSPIRATION AND BIOMIMETICS

EXAMPLES OF COMPLIANT ROBOTS INSPIRED BY NATURE

Fish

Boyer et al, Mines Nantes, France

t=0.02200 p. V_10==3.020 m/s. V1_10=0.003 m/s

soft eel

SOFT ROBOT TECHNOLOGIES

Fluidic actuators

Hydraulic actuation

PneuNet

Mc Kibben muscles

Tendons

Design and locomotion control of soft robot using friction manipulation and motor-tendon actuation Vishesh Vikas, Eliad Cohen, Rob Grassi, Canberk So[°]zer and Barry Trimmer

Shape memory materials:

MIT & Harvard University

Micro NiTi coil actuators

.

- Dielectric ElectroActive Polymers (EAP)
 - Polymers that exhibit a change in size or shape when stimulated by an electric field.
 - Can be used as actuator and sensor

SRI International.

Univ Sydney

Eamex Corp.

SENSORS

- Textile Silicone Hybrid Sensor
 - two outer electrode layers of highly stretchable silver plated knitted textile
 - a dielectric layer of silicone elastomer in between
 - Capacitance change when the sensor is stretched

SENSORS

- Pneumatic sensors
 - Flow
 - Pressure

יזיני אורא ארוע דענייניא ארא אייש איישיא

SENSORS

Optical fibers & compliant structure

Figure 3. Equivalent spring model of the flexible tripod platform

Figu

Mirror Linear guide

STRETCHABLE ELECTRONICS

Hirsch, Arthur, Hadrien O. Michaud, Aaron P. Gerratt, Séverine De Mulatier, and Stéphanie P. Lacour. "Intrinsically stretchable biphasic (solid–liquid) thin metal films." *Advanced Materials* 28, no. 22 (2016): 4507-4512.

Paik, Jamie K., Rebecca K. Kramer, and Robert J. Wood. "Stretchable circuits and sensors for robotic origami." Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011.

SOFT ROBOT TECHNOLOGIES

STRETCHABLE ELECTRONICS & SENSORS (CAPACITIVE AND PRESSURE)

Escaida Navarro et al. accepted to RAL 2020

STRUCTURE AND OPTIMISATION

(c)

A concept... not yet a theory...

Adaptive behaviour emerges from the interaction between the morphology of the **body**, the **environment** and the **task**.

A concept... not yet a theory...

Pfeifer, Rolf, Fumiya lida, and Gabriel Gómez. "Morphological computation for adaptive behavior and cognition." *International Congress Series*. Vol. 1291. Elsevier, 2006.

Pfeifer, Rolf, and Fumiya lida. "Embodied artificial intelligence: Trends and challenges." *Embodied artificial intelligence*. Springer, Berlin, Heidelberg, 2004.

Evolutionary algorithms

Evolutionary algorithms

© Jonathan Pepe/DEFROST team

MODELING AND SIMULATION

- Modeling for real-time simulation
- Constraint-based modeling

MODELING AND SIMULATION

PHYSICS-BASED SIMULATION FOR ROBOTICS SYSTEMS

Many use-cases !

NVIDIA Isaac Platform

Da Vinci Training Simulator - Intuitive

PHYSICS-BASED SIMULATION FOR SOFT ROBOTICS SYSTEMS

- Rigid Robot Kinematics derived from geometry
- Soft Robot Kinematics derived from mechanics !

DEFORMABLE MECHANICAL MODELS FOR ROBOTICS SYSTEMS

soft robots are deformable solids: why not using continuum mechanics ?

Finite Strain Theory in continuum mechanics

Finite Element Analysis and Design Optimization of a Pneumatically Actuating Silicone Modulefor Robotic Surgery Applications

Elsayed et al. Soro 2014

- ++ « Classical » mechanics
- ++ material properties
- – no analytical solutions

- ++ Well known in numerical mechanics
- ++ Existing software (don't need to know the continuum mechanics to use it)
- ++ take into account the geometry and material properties
- – computation time

MECHANICAL DEFORMABLE MODELS

FEM model

TIME INTEGRATION SCHEMES WITH COLLISION EVENTS

acceleration is not defined !

V- <0 before impact and V+ >0 after impact.. between them, an infinite small time step

TIME-STEPPING METHOD

• Low order Integration scheme:

$$\mathbf{M}(\mathbf{v}_f - \mathbf{v}_i) = h \left(\mathbb{P}(t_f) - \mathbb{F}(\mathbf{q}_f, \mathbf{v}_f) \right) + h \mathbf{H}^T \lambda_f$$

$$\mathbf{q}_f = \mathbf{q}_i + h \mathbf{v}_f$$

1 Linearization per step:

$$\mathbb{F} \left(\mathbf{q}_i + d\mathbf{q}, \mathbf{v}_i + d\mathbf{v} \right) = \mathbf{f}_i + \frac{\delta \mathbb{F}}{\delta \mathbf{q}} d\mathbf{q} + \frac{\delta \mathbb{F}}{\delta \mathbf{v}} d\mathbf{v}$$

No assumption on the type of deformable model (compatible with hyperelastic models)

Matrix system to be solved:

$$\underbrace{\begin{pmatrix} \mathbf{M} + h\frac{\delta\mathbb{F}}{\delta\mathbf{v}} + h^2\frac{\delta\mathbb{F}}{\delta\mathbf{q}} \end{pmatrix}}_{\mathbf{A}}_{\mathbf{x}} = \underbrace{-h^2\frac{\delta\mathbb{F}}{\delta\mathbf{q}}\mathbf{v}_i - h\left(\mathbf{f}_i + \mathbf{p}_f\right)}_{\mathbf{b}} + h\mathbf{H}^T\lambda$$
or (quasi static case)
$$\underbrace{\frac{\delta\mathbb{F}}{\delta\mathbf{q}}}_{\mathbf{A}} \underbrace{\frac{d\mathbf{q}}{d\mathbf{x}}}_{\mathbf{b}} = \underbrace{\mathbb{P} - \mathbf{f}_i + \mathbf{H}^T\lambda}_{\mathbf{b}}$$

$$\underbrace{\mathbf{M}(\mathbf{v}_f - \mathbf{v}_i)}_{\mathbf{A}} = h\left(\mathbb{P}(t_f) - \mathbb{F}(\mathbf{q}_f, \mathbf{v}_f)\right) + h\mathbf{H}^T\lambda_f$$

Compatible with rigid body dynamics:

[Stewart & Trinkle (1996)]

Mass and Inertia Gravity forces Coriolis & centrifugal forces

HOW TO MAKE IT REAL-TIME ?

- Use of numerical recipes
 - Optimisation of the structure of the matrix (see D.James et al.,...)
 - Preconditioners (see H.Courtecuisse et al.)
 - Domain decomposition (see Barbic *et al.,* Kry *et al.,* ...)

• • • •

- Code & formulation optimisation
 - GPU implementation (see J.Allard *et al.,* ...)
 - Multigrid or adaptive methods (Georgii *et al.,* Debune *et al.,...*)
 - Fast hyperelastic models (see S.Marchesseaux, H.Delingette et al.)
 - • •
- Precomputation
 - Condensation methods (Cotin *et al.,...*)
 - Reduced-order methods (Barbic et al., Goury et al....)

•••

Different communities: computer animation, biomechanics, numerical methods,...

$$\mathbf{q}(t, \boldsymbol{\lambda}(t)) \approx \mathbf{q}(0) + \sum_{i=1}^{N} \phi_i \alpha_i(t, \boldsymbol{\lambda}(t)) = \mathbf{q}(0) + \mathbf{\Phi} \alpha(t, \boldsymbol{\lambda}(t)) \quad (4)$$

This leads to the reduced equations

$$\underbrace{\Phi^T \mathbf{A}(\mathbf{q}_t, \mathbf{v}_t) \Phi}_{\mathbf{A}_r} \mathbf{d} \alpha(t+1) = \underbrace{\Phi^T \mathbf{b}(\mathbf{q}_t, \mathbf{v}_t)}_{\mathbf{b}_r} + \underbrace{(\mathbf{H} \Phi)^T}_{\mathbf{H}_r} \lambda,$$

- Offline stage:
 - shake the robot within the range of its actuators => compute a snapshot space S
 - Find basis that minimize the cost function $\widehat{J}(\Phi)^2 = \sum_{\lambda^* \in \widehat{\Lambda}} \sum_{t=t_0}^{t=t_{n_t}} \left\| \mathbf{q}(t, \lambda^*(t)) \sum \left(\phi_i^T \mathbf{q}(t, \lambda^*(t)) \right) \phi_i \right\|_2^2.$
 - After SVD $\mathbf{s} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$ (and truncation), we obtain the reduced basis:
- Hyper-reduction
 - > additional stage for reducing computations with no loss of information

Performance

	Arms Measurement Position	Performance	Coarse mesh	Model order reduction
		Computation time	0.03s	0.02s
		relative error for goal position	0.35	0.08
	$\alpha_1 + \alpha_2 + \alpha_3 $	relative error for arm position	0.6	0.1
0.07	+ α_{4} , ϕ + α_{5} , ϕ + α_{6} , ϕ + ϕ		Goury & Duriez	IEEE Trans on Robotics, 2018
0.04 -				

CONSTRAINT-BASED MODELING

CONSTRAINT-BASED MODELING

$$\underbrace{(M - hD - h^{2}K)}_{A} dv = \underbrace{hf_{ext} + hf(x_{i}, v_{i}) + h^{2}Kv_{i}}_{b}$$

$$\underbrace{-K}_{A} dx = \underbrace{f(x_{i-1}) + f_{ext}}_{b} \quad \text{(quasi static)}$$

For effector, actuator and contact we use **Lagrange multipliers**:

$$\begin{pmatrix} A & H^T \\ H & 0 \end{pmatrix} \begin{pmatrix} dx \\ -\lambda \end{pmatrix} = \begin{pmatrix} b \\ \delta \end{pmatrix}$$

For effector, actuator and contact we use Lagrange multipliers:

Constraint Jacobian: direction of the constraint forces

For effector, actuator and contact we use **Lagrange multipliers**:

For effector, actuator and contact we use **Lagrange multipliers**:

Shift, volume growth...

Schur Complement: $W = HA^{-1}H^{T}$

51

WHAT IS W ? : THE COMPLIANCE

Mechanical coupling

- For a force on actuator space, what displacement on effector and actuator spaces ?
- By combining compliances we obtain the kinematic model:

 $d\mathbf{x} = \mathbf{J}(\mathbf{q}) \ d\mathbf{q} = \mathbf{W}_{xq}(\mathbf{q}) \ \mathbf{W}_{qq}^{-1}(\mathbf{q}) d\mathbf{q}$

dq

 $\mathbf{dx} = \mathbf{W}_{xq}(\mathbf{q}) \, \boldsymbol{\lambda}_{\mathbf{q}}$

 $\mathrm{d}\mathbf{q} = \mathbf{W}_{\mathbf{q}\mathbf{q}}(\mathbf{q})\,\boldsymbol{\lambda}_{\mathbf{q}}$

CONSTRAINT BASED MODELING OF SOFT-ROBOTS

SOFT-ROBOT DESIGN & CONTROL

Bieze et al. IJRR 2020

COMPLEMENTARITY CONSTRAINTS

Contact

Signorini's law = two constraint cases:

CONSTRAINT-BASED MODELING

CHALLENGES

- Large systems of coupled equations
 - Penalty
 - Lagrange multipliers

Schur Complement: W = $HA^{-1}H^{T} + HA^{-1}H^{T}$

(Friction)Contact = (N)LCP solver

SOFT ROBOT INTERACTING WITH THEIR ENVIRONMENT

Speed x3

Grasping simulation

Locomotion

Coevoet et al. Advanced Robotics 2017

CONTROL METHODS

- Inverse kinematics
- Sensing & Closed-loop control

PROBLEM STATEMENT

Soft trunk: 8 cables

TASK: INSPECTION

TASK: INSPECTION WITH COLLISION

INVERSE KINEMATICS

TASK: MANIPULATION & LOCOMOTION

Difficulties:

- Continuous deformation: infinite DoFs
- Hyper-redundant and under-actuated
- Highly sensitive to environmental factors

- →Modeling and control more complex
- →Require new techniques

Trivedi et al. (2008) - *Applied Bionics and Biomechanics* Rus & Tolley (2015) - *Nature*

OPTIMIZATION : PROBLEM

Formulation of Quadratic Program (QP) with linear constraints:

$$min(\| \boldsymbol{\delta}_{e} \|^{2}) = min\left(\frac{1}{2}\boldsymbol{\lambda}_{a}^{T}\mathbf{W}_{ea}^{T}\mathbf{W}_{ea}\boldsymbol{\lambda}_{a} + \boldsymbol{\lambda}_{a}^{T}\mathbf{W}_{ea}^{T}\boldsymbol{\delta}_{e}^{\text{free}}\right)$$

$$subject \ to \ (\text{course of actuators}):$$

$$\delta_{min} \leq \boldsymbol{\delta}_{a} = \mathbf{W}_{aa}\boldsymbol{\lambda}_{a} + \boldsymbol{\delta}_{a}^{\text{free}} \leq \delta_{max}$$

$$and \ (\text{case of unilateral effort actuation}):$$

$$\boldsymbol{\lambda}_{a} \geq 0$$

INVERSE KINEMATICS

OPTIMIZATION : EXPERIMENTS

	#DoFs	#Elem	W	QP	Sim.
trunk	2127	1972	2.8 <i>ms</i>	< 0.1 <i>ms</i>	24.1 <i>ms</i>

OPTIMIZATION : PROBLEM

- Redundancy problem (not naturally well-posed)
 - ► If $W_{ea}^{T}W_{ea}$ is not definite (num Effectors \leq num Actuators),
 - Not unique solution
 - Add to objective: expression of actuators mechanical work $E = \Delta \delta_a \lambda_a = \lambda^T_a W_{aa} \lambda_a$

$$min\left(\frac{1}{2}\boldsymbol{\lambda_{a}}^{T}\mathbf{W}_{ea}^{T}\mathbf{W}_{ea}\boldsymbol{\lambda_{a}} + \boldsymbol{\lambda_{a}}^{T}\mathbf{W}_{ea}^{T}\boldsymbol{\delta}_{e}^{\text{free}} + \boldsymbol{\epsilon} \boldsymbol{E}\right)$$

subject to (course of actuators): $\delta_{min} \leq \delta_a = \mathbf{W}_{aa} \lambda_a + \delta_a^{\text{free}} \leq \delta_{max}$ and (case of unilateral effort actuation) $\lambda_a \geq 0$

 $\boldsymbol{\epsilon} = 1 \mathrm{e}^{-3} \| \mathbf{W}_{\mathrm{ea}}^{\mathrm{T}} \mathbf{W}_{\mathrm{ea}} \|_{\infty} \| \mathbf{W}_{\mathrm{aa}} \|_{\infty}$

OPTIMIZATION: CONTACTS

Formulation of Quadratic Program with linear Complementarity Constraints (QPCC):

s.t: (1)
$$\delta_{max} \ge \delta_a \ge \delta_{min}$$

(2) $\theta \le \lambda_c \perp \delta_c \ge \theta$

(1) Constraints on actuators (such as limit on cable displacement)(2) Complementarity constraint for contacts

→ Specific solver based on decomposition method:

How to find the feasible and optimal set I of active contacts?

Starts from feasible set I (solve the contact with fixed actuation)

```
Solve (QP)
```

Look at constraints: reach boundary = candidate for pivot (Tan et al. (2012) - *TOG*)

Pivot constraint with the greater dual variable No more candidate for pivot

→ solution

Starts from feasible set I (solve the contact with fixed actuation)

Solve (QP)

Look at constraints: reach boundary = candidate for pivot (Tan et al. (2012) - *TOG*)

Pivot constraint with the greater dual variable No more candidate for pivot → solution

Starts from feasible set I (solve the contact with fixed actuation)

Solve (QP)

Look at constraints: reach boundary = candidate for pivot (Tan et al. (2012) - *TOG*)

Pivot constraint with the greater dual variable No more candidate for pivot → solution

Starts from feasible set I (solve the contact with fixed actuation)

Solve (QP)

Look at constraints: reach boundary = candidate for pivot (Tan et al. (2012) - *TOG*)

Pivot constraint with the greater dual variable No more candidate for pivot → solution

70

Starts from feasible set I (solve the contact with fixed actuation)

```
Solve (QP)
```

Look at constraints: reach boundary = candidate for pivot (Tan et al. (2012) - *TOG*)

Pivot constraint with the greater dual variable No more candidate for pivot → solution

71

Starts from feasible set I (solve the contact with fixed actuation)

```
Solve (QP)
```

Look at constraints: reach boundary = candidate for pivot (Tan et al. (2012) - *TOG*)

Pivot constraint with the greater dual variable No more candidate for pivot → solution
QPCC Solver

Starts from feasible set I (solve the contact with fixed actuation)

```
Solve (QP)
```

Look at constraints: reach boundary = candidate for pivot (Tan et al. (2012) - *TOG*)

Pivot constraint with the greater dual variable No more candidate for pivot

→ solution

EXTENSION TO CONTACT

	#DoFs	#Elem	#Conct.	W	QP(s)	Sim.
trunk	2127	1972	51	10.09 <i>ms</i>	4.91 <i>ms</i>	34.52 ms

EXTENSION TO STICK CONTACT

Contact force given by the composition of normal and tangential (friction) forces:

 $\mathbf{H}_{c}^{T}\lambda_{c} = \mathbf{H}_{n}^{T}\lambda_{n} + \mathbf{H}_{t}^{T}\lambda_{t}$

EXTENSION TO STICK CONTACT

Locomotion

How to change the tendon lengths to make the wheel rolls to a desired position ?

Manipulation

How to pull on tendons to control the plastic cup motion ?

Coevoet et al., Robosoft Conference 2019

SENSING & CLOSED-LOOP CONTROL

FEEDBACK CONTROL LOOP

position measured with camera

control maintains a stable position

$d\mathbf{x} = \mathbf{J}(\mathbf{q}) \ d\mathbf{q} = \mathbf{W}_{xq}(\mathbf{q}) \ \mathbf{W}_{qq}^{-1}(\mathbf{q}) d\mathbf{q}$

Zhang, Z., et al, IROS 2016

proof of convergence: Zhang, Z., et al, IROS 2017

FEEDBACK CONTROL LOOP

Sensors : tendons (length)

Actuators : pressure

Bieze et al, SoRo 2018

FUSE MODEL AND SENSOR INFORMATIONS

Zhang, Z. et al ICRA 2018 & Robotic and Automation Letters

SENSING & CLOSED-LOOP CONTROL

HAPTIC FEEDBACK CONTROL

Fuse model and informations from sensors

- Control at high rates (in parallel of the simulation of the robot)
- Linearization at low rate
- > 2 inverse problem solved at high rates:
 - Positions found by sensors=> force
 - Actuation

DYNAMIC CONTROL

- Additional difficulty to cancel natural vibration: refresh rates
- Model order reduction + feedback control
- Observer in the reduced space
- Linearization at the desired position
- Remove low frequency vibrations

M. Thieffry et al., IEEE TCST 2019 Katzschmann, R. K., Thieffry M et al., IEEE Robosoft 2019

CONCLUSION & PERSPECTIVES

SOFT ROBOTICS

- Deformable/Soft robots = a new way of designing robots
- Research on hardware
 - How to design these robots ? bioinspiration ?
 - Choices of materials => links with « smart materials »
 - Integration (structure, electronics, actuators, sensors...) while keeping the desired softness !
- Research on software
 - New models, based on finite element approaches or similar methods
 - No methodology (so far) for design
 - Importance of allowing contacts with environment
 - Control methods for systems with large number of degrees of freedom

CONCLUSION

SOFT-ROBOTICS : PLAY WITH IT WITH SOFA !

- Our code is based on SOFA (LGPL License)
 - Please visit the website <u>sofa-framework.org</u> (LGPL License)
 - > You can use it & contribute to it !
 - We have launched a consortium: code maintenance, forum, training, code distribution...
 - If you want to support these activities, your institution can take a membership
 - For instance Kyungpook University (south Korea), University of Florida (US) are members
- Plugins developed by the team
 - soft-robot plugin: direct simulation of soft robots (LGPL License)
 - Plugin on reduced order model (GPL License)
 - Inverse simulation / control (patent pending...)
 - Free binaries distribution for research
 - > To access the code, easy licence agreement with Inria for research
- > We did our first Tutorial on Sunday, we hope to gather new users & contributors !
 - https://handsonsoftrobotics.lille.inria.fr (tutorial)
 - <u>https://team.inria.fr/defrost/</u> (team website)
 - Free Library of soft robots ?

PERSPECTIVES

OPPORTUNITIES

« Hybrid » robots made of soft and hard materials...?

THANKS !

Faculty

- Jérémie Dequidt: Associate Prof Université de Lille
- Gang Zheng: Senior researcher INRIA (Vice-Leader)
- Olivier Goury: Junior researcher INRIA
- Alexandre Kruszewsky: Associate Prof Centrale Lille
- Associate Engineers
 - > Damien Marchal: Research engineer **CNRS** (half time)
 - Bruno Carrez: Research engineer INRIA (half time)
- Engineers
 - Thor Morales Bieze: Hardware Engineer
 - Meichun Lin: Software Engineer
 - Bruno Marquez: Software Engineer
 - Yinoussa Adagolodjo: Software Engineer
- PhD students
 - Antonin Bernardin: Simulation of suction cup (Collaboration with M. Marchal)
 - Walid Amehri: Controllability and observability of soft robots
 - Felix Vanneste: Mesostructured soft-robot
 - Pierre Schegg: Robot Catheter navigation
 - Ke Wu: Dynamic control
- Post-doc
 - Stefan Escaida: Sensors for soft robots
- Alumni (work presented in this presentation)
 - Zhongkai Zhang: Visual servoing for soft robots
 - Eulalie Coevet: Inverse models for soft-robots
 - Maxime Thieffry: Dynamic control
 - Margaret Koehler (Visiting from Stanford Univ)
 - Thomas Morzadec: Shape optimization

This work has been supported by:

