Optimisation of mono-articular or bi-articular linear actuation for a planar biped robot

C. Chevallereau, P. Wenger, Y. Aoustin, LS2N, CNRS, Université de Nantes
F. Mercier, N. Delanoue; P. Lucidarme LARIS, Université d’Angers

JNRH, 26 juin 2020

Robibio Project (RFI Atlanstic2020)

Design of a planar robot equipped with linear electric actuators

- Backdrivability property (no gear box) useful for impact

- How to place the linear actuators?
- Architecture
- Attachment points

Actuation architecture

Hight level

mono-articular bi-articular

Figure 1. Main muscle groups of the lower limbs in the sagittal plane. Figure adapted from [30].

Robot with only 3 actuators in sagittal plane

3 of 5 actuators :
$F_{a}, F_{k}, F_{h}, F_{a k}, F_{k h}$

- 3 mono (case 1)
- 1 bi +2 mono $(2,3,4,6)$
- 2 bi + 1 mono $(5,7,8)$

The model of a leg

3 dof : $q_{a \nu} q_{k} q_{h}$

The robot model

The dynamic model

$$
A(q) \ddot{q}+C(q, \dot{q}) \dot{q}+G(q)=\Gamma
$$

The torque is produced by the linear actuators (3 of 5)

$$
\left[\begin{array}{c}
\Gamma_{a} \\
\Gamma_{k} \\
\Gamma_{h}
\end{array}\right]=\left[\begin{array}{ccccc}
J_{a, a}\left(q_{a}\right) & J_{a, a k}\left(q_{a}, q_{k}\right) & 0 & 0 & 0 \\
0 & J_{k, a k}\left(q_{a}, q_{k}\right) & J_{k, k}\left(q_{k}\right) & J_{k, k h}\left(q_{k}, q_{h}\right) & 0 \\
0 & 0 & 0 & J_{h, k h}\left(q_{k}, q_{h}\right) & J_{h, h}\left(q_{h}\right)
\end{array}\right]\left[\begin{array}{c}
F_{a} \\
F_{a k} \\
F_{k} \\
F_{k h} \\
F_{h}
\end{array}\right] .
$$

Simplification of the model : the choice of actuators do not modify the mass distribution

Best attachment points of the

 motors- Location of attachment points of a linear motor defines the torque available at the joint axis.
- With a linear motor, the torque available varies with joint axis.
- The robot is defined to achieve a set of given tasks
- Squat motion
- Walking as stance leg
- Walking as swing leg

Fig. 3. Upper: hip torque against hip joint. Middle: knee torque against knee
joint. Lower ankle torque against ankle joint. Blue, joint. Lower ankle torque against ankle joint. Blue, red and yellow stand for

$$
\begin{aligned}
A(q) \ddot{q}+C(q, \dot{q}) \dot{q}+G(q) & =\Gamma \\
& \\
& D(t)=\left[t, q_{a}(t), q_{k}(t), q_{h}(t), \Gamma_{a}(t), \Gamma_{k}(t), \Gamma_{h}(t)\right]^{\top} .
\end{aligned}
$$

Optimisation problem

- Constraints

The attachment points belong to given areas

- Criterion

For design purposes, the objective is to find the best design that minimizes the maximal force

$$
\mathcal{C}_{1}=\min _{\left(A_{1}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}\right) \in S}\left(\max \left(\left|F_{1}\right|,\left|F_{2}\right|,\left|F_{3}\right|\right)\right)
$$

I to 3 forces are considered
such that
architecture

simultaneously depending on

$$
\begin{gathered}
\forall t, q_{a}(t), q_{k}(t), q_{h}(t), \Gamma_{a}(t), \Gamma_{k}(t), \Gamma_{h}(t) \in D(t), \\
{\left[\begin{array}{c}
\Gamma_{a} \\
\Gamma_{k} \\
\Gamma_{h}
\end{array}\right]=J\left(q_{a}, q_{k}, q_{h}\right)\left[\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right]}
\end{gathered}
$$

Among the solutions minimizing C_{1}, the minimal forces are expected to achieve the task :

$$
\mathcal{C}_{2}=\min _{\left(A_{1}, B_{1}, A_{2}, B_{2}, A_{3}, B_{3}\right) \in S} \int_{t \in D}\left(F_{1}^{2}+F_{2}^{2}+F_{3}^{2}\right) \mathrm{d} t
$$

$C_{1} \rightarrow \quad C=\mu C_{1}+C_{2}$ with large μ

Design with mono-articular actuator

3 decoupled problems

 Joint ${ }^{j}$$$
\Gamma_{j}=J_{j, j}\left(q_{j}\right) F_{j}
$$

$J_{j, j}$ is the height of the triangle $A_{j} O_{j} B_{j}$

$$
J_{j, j}\left(q_{j}\right)=\frac{d_{A j} d_{B j} \sin \left(q_{A B j}+q_{j}\right)}{\sqrt{d_{A j}^{2}+d_{B j}^{2}-2 d_{A j} d_{B j} \cos \left(q_{A B j}+q_{j}\right)}}
$$

- $\mathrm{J}_{\mathrm{j}, \mathrm{j}}$ depends only on 3 parameters $\mathrm{d}_{\mathrm{A},} \mathrm{d}_{\mathrm{Bj},} \mathrm{q}_{\mathrm{ABj}}$.
- $\sin \left(q_{A B j}+q_{j}\right)$ at numerator \rightarrow singularity for a variation of $q_{j}>\pi$.
- $q_{A B j}$ is chosen to avoid singularity in workspace
- $d_{A \mathrm{i},} \mathrm{d}_{\mathrm{Bj}}$ have a similar contribution to $\mathrm{J}_{\mathrm{i}, \mathrm{j}}$

$$
\max _{0^{\circ}<q_{A B j}+q_{j}<180^{\circ}} J_{j, j}\left(q_{j}\right)=\min \left(d_{A j}, d_{B j}\right)
$$

Design for mono-articular actuator

Effects of parameters on $\mathrm{J}_{\mathrm{j}, \mathrm{j}}$

- $\min \left(d_{A j}, d_{B j}\right)$ is maximized in the possible placement area
- $\max \left(\mathrm{d}_{\mathrm{Aj}}, \mathrm{d}_{\mathrm{Bj}}\right)$ changes the shape of $\mathrm{J}_{\mathrm{j}, \mathrm{j}}$
- $q_{A B j}$ translates the curve along horizontal axis

$$
\quad F_{M j}=\max _{\Gamma_{j} \in D} \frac{\left|\Gamma_{j}\right|}{\min \left(d_{A j}, d_{B j}\right)}
$$

Fig. 5. Evolution of $\left|J_{j, j}\right|$ for $d_{A j}=0.1 \mathrm{~m}$ for different values of $d_{B j}$: $d_{B j}=0.098 \mathrm{~m}$ (blue, dotted), $d_{A j}=d_{B j}$ (blue), $d_{B j}=0.2 \mathrm{~m}$ (black), $d_{B j}=0.3 \mathrm{~m}$ (red), $d_{B j}=0.4 \mathrm{~m}$ (green), $d_{B j}=0.5 \mathrm{~m}$ (cyan), $d_{B j}=$ 1000 m . There are two symmetric curves from 0° to 180° and from 180° to 360°. Their shape changes when $d_{B j}$ increases and becomes symmetrical in $q_{A B j}+q_{j}=90^{\circ}$ and $q_{A B j}+q_{j}=270^{\circ}$ when $d_{B j}$ tends to infinity.

Heuristic design for mono-articular actuator

- The constraint $\mathrm{d}_{\mathrm{Aj}}<0.1 \mathrm{~m}, \mathrm{~d}_{\mathrm{Bj}}<0.4 \mathrm{~m}$,

- The tasks
- $\mathrm{d}_{\mathrm{Aj}}<0.1 \mathrm{~m}, \mathrm{~d}_{\mathrm{Bj}}<0.4 \mathrm{~m}$,

The desired joint displacement < 180°

The higher required force is for ankle.

Heuristic design for mono-articular actuator

Optimal design for mono-articular actuator

Optimisation can also be done numerically.
The parameters optimized are only d_{Bj} and $\mathrm{q}_{\mathrm{ABj}}, \mathrm{d}_{\mathrm{Aj}}=0.1 \mathrm{~m}$
The heuristic solution is the starting design for an optimisation done using SQP method.
The results are close for criterion : $\mathrm{C}=\mu \mathrm{C}_{1}+\mathrm{C}_{2}$

	Parameters	\mathcal{C}_{1} N	\mathcal{C}_{2} $10^{5} N^{2} s$
Method	Heuristic		
Ankle	$d_{B a}=0.2 \mathrm{~m}, q_{A B a}=73.3^{\circ}$	922.9	1.63
Knee	$d_{B k}=0.11 \mathrm{~m}, q_{A B k}=-90.6^{\circ}$	651.2	1.66
Hip	$d_{B h}=0.13 \mathrm{~m}, q_{A B h}=-21.6^{\circ}$	467.3	1.32
Biped	Numeric		
Method			
Ankle	$d_{B a}=022.9$	4.62	
Knee	$d_{B k}=0.17 \mathrm{~m}, q_{A B a}=66.6^{\circ}$	922.9	1.63
Hip,$q_{A B k}=-90.2^{\circ}$	649	1.66	
Biped	$d_{B h}=0.14 \mathrm{~m}, q_{A B h}=-25.7^{\circ}$	467.3	1.31

Design of bi-articular actuator

- Four parameters: $d_{A}, q_{A}, d_{B}, q_{B}$
- The bi-articular actuator cannot be defined alone since in the architecture, several actuators act on the same joint

Fig. 10. Position of the attachment points for bi-articular actuation.

The bi-articular actuator acts alone on knee but not on ankle.
Bi -articular actuator F_{ak} is defined together with mono-articular actuator F_{a} Mono-articular actuator F_{h} defined previously is optimal.

Heuristic design of bi-articular actuator

Model

$$
\left[\begin{array}{c}
\Gamma_{a} \\
\Gamma_{k}
\end{array}\right]=\left[\begin{array}{cc}
J_{a a}\left(q_{a}\right) & J_{a, a k}\left(q_{a}, q_{k}\right) \\
0 & J_{k, a k}\left(q_{a}, q_{k}\right)
\end{array}\right]\left[\begin{array}{c}
F_{a} \\
F_{a k}
\end{array}\right]
$$

The bi-articular actuator acts on 2 joints with a ratio $r_{a k}$

$$
\left[\begin{array}{c}
\Gamma_{a} \\
\Gamma_{k}
\end{array}\right]=\left[\begin{array}{cc}
J_{a a}\left(q_{a}\right) & r_{a k}\left(q_{a}, q_{k}\right) J_{k, a k}\left(q_{a}, q_{k}\right) \\
0 & J_{k, a k}\left(q_{a}, q_{k}\right)
\end{array}\right]\left[\begin{array}{c}
F_{a} \\
F_{a k}
\end{array}\right]
$$

It can be written

$$
\left[\begin{array}{c}
\Gamma_{a}-r_{a k} \Gamma_{k} \\
\Gamma_{k}
\end{array}\right]=\left[\begin{array}{cc}
J_{a a}\left(q_{a}\right) & 0 \\
0 & J_{k, a k}\left(q_{a}, q_{k}\right)
\end{array}\right]\left[\begin{array}{c}
F_{a} \\
F_{a k}
\end{array}\right]
$$

With a good design the load of the mono-articular ankle actuator can be reduced.

The bi-articular actuator actuates the knee alone.

Heuristic design of bi-articular actuator

The initial design can be improved by numerical optimisation.
The methodology can be extended to the case of 2 bi-articular actuators

Comparison of the 8 designs

- The required torque is higher for the ankle.
- The maximal force at ankle is reduced when the monoarticular actuator is helped by a bi-articular actuator.
- Results are improved with 2 bi-articular actuators.

> MAXIMAL FORCE (N) REQUIRED FOR EACH ACTUATOR FOR THE HEIGHT DESIGNS

The optimal design

- The best architecture

- The best design

Conclusion/Perspective

- A methodology has been proposed to choose the best architecture of actuation with mono and bi-articular actuators.
- Bi-articular actuators allow to reduce the force used by actuators.
- A methodology has been proposed to chose the pose of attachment point for linear actuators.
- The design is based on the desired tasks to be achieved by the robot.
- A more complete set of tasks may lead to a different design
- It would be interesting to study redundant case with more than 3 actuators
- An extension to antagonist actuations can be considered (linear actuator can produce negative or positive forces contrary to muscle).

