Robotique, Biomécanique, Sport, Santé

Design of an open-robotics low-level framework for the control of complex mechatronics devices

<u>P. Laguillaumie</u>, P. Vulliez, RoBioSS, Pprime Institute / Auctus Inria ITECA

INSTITU

Design of RTRMAC

RTRobMultiAxisControl: RTRMAC

- Group of libraries, user extendable
- Multiaxis and multirobot control
- Based on hardware Real-Time constraints
- Respect of PLC standards
- Manufacturer independent

=> "open robotics"

• CNRS software patent

Presentation overview

- Context
- Foundations
- "Manufacturer independent" feature
- Single axis / coordinated axis managers
- Control of a humanoid robot
- Conclusion

Context

Context: situation in 2012

- A different control technology for each experimental set-up
 - Humanoid / BIP: VxWorks + Inria ORCCAD
 - Humanoid / TIDOM: specific drive boards over CAN bus
 - Manipulation / LMS hand: CNC Galil Controllers
 - Large scale printing robot: NI Labview RT
- Partnership with B&R Automation / experience with industrial servodrives and PLC programming

Context: strategy change

Systematic use of industrial-grade hardware Creation of a single low-level control solution

- Multi-axis control for reliable dynamic response to environmental disturbances
- Control of industrial robot architectures
- Force/velocity/position axis control

With respect to:

- Standards compliance
- Optimal use of the power drives
- Code reusability and maintainability
- Hard Real Time
- Feasible industrial transfer

Evolution

Steps:

v1: 100% PLC world > v2: C > v3: C++ / PLCopen coding recommandations

Currently used for all our mechatronics designs

- Robotic hands
- Cobotics with industrial arms
- Haptics and motion learning devices
- Test benches
- ORHRO humanoid

Foundations

Fondations

- *PLC Real-Time hardware (IEC61131)*
- 1 Timer (RT Industrial Ethernet bus)
- Respect of main PLC standards (PLCopen international organization)
 - PCL compatiblity (sofware model & languages)
 - PLCopen Motion Control
- OOP (encapsulation, heritage, template)
- PLCopen Compliant Libraries requirements
- OPC-UA, OPC-UA/TSN

PLC compatibility

- RT scheduler and tasks run periodically
 - A task class system controls the execution periods and the tasks' priorities
 - Variable sharing among tasks and I/O data mapping to variables
- IEC61131-3 languages can be used in the project
- Base program organization unit: Function Block (similar to a mono-method class)

FB examples

- TON : Timer on delay (standard FB, synchronous)
- UdpOpen (supplier specific, asynchronous)

TON			
<pre>VAR_INPUT IN : BOOL //Input signal PT : TIME //Delay time</pre>	<pre>VAR_OUTPUT Q : BOOL //Rising edge of the input signal is delayed by PT ET : TIME //Elapsed time</pre>		

UdpOpen				
VAR_INPUT enable : BOOL //Input signal pIfAddr: UDINT //IP address of the Ethernet interface port : UINT	<i>VAR_OUTPUT</i> status : UINT ident : UDINT			

FB examples

- TON : Timer on delay (standard FB, synchronous)
- UdpOpen (supplier specific, asynchronous)

	TON	UdpOp	en
<pre>VAR_INPUT IN : BOOL //Input signal PT : TIME //Delay time</pre>	<pre>VAR_OUTPUT Q : BOOL //Rising edge of the input signal is delayed by PT ET : TIME //Elapsed time</pre>	VAR_INPUT enable : BOOL //Input signal pIfAddr: UDINT //IP address of the Ethernet interface port : UINT	VAR_OUTPUT status : UINT ident : UDINT

Continuously read variables

Parameters (async. access)

Execution regulation of the function

PLCopen compliant lib.

- Definition of a limited number of execution behaviors required for control-command func.
- Standardized inputs / outputs
- Level-controlled / Edge triggered
- Time out limit
- Limit of execution time within a timer period
- Error handling and information

Level-controlled FB

RTRMAC implementation

One Function Block = 2 classes

• Run-time behavior

(abstract classes implement the reference state machines)

• Parameter management (validation and update processes)

A simple example

Analog input conversion integer from an input module -> float value with physical significance)

RbAnalogInput				
VAR_INPUT	VAR_OUTPUT			
Enable	Busy			
	Error			
Param : RbAnalogInputParam	ErrorID			
	S_ana			
N_ana	dS_ana			
	d2S ana			

Parameter consistency

Execution behavior

Independence from manufacturers

CPUs

- Targets:
 - PLC / IPC B&R Automation
 - GPOS: Windows (Linux): simulation running on a periodic thread
 - Microcontroller
- Requirements:
 - *C++11*
 - Eigen
 - PLCopen Motion Control (for position controllers)

Drive topologies

Drive topologies

Single axis / multiaxis levels

Single axis control

- Servo control loops depending on the drive topology, completing the robust cascade position-velocity-torque control scheme
- PLCopen Motion Control compliance (function blocks, state machine)
- Generic robotic axis manager with specialized state machine
- Interface with PLC world with data flow structures

Axis manager, state machine

Axis manager, cyclic control

Robot level

RTRMAC implementation

- Low level regulation functions
- Interfaces to main drive topologies
- PLCopen Motion Control Single Axis level
- Robotic axis manager
- Robot / coordinated axis manager
- I/O utilities

Humanoid at Pprime

ORHRO's first leg

- J. Gastebois PhD thesis (2017) RTRMAC v2 (C)
- Runs on a standard PLC Application specific control software Matrix library
- Watch: youtube RoBioSS Control of a robot leg using a postural stabilizer

ORHRO's first leg

Short term evolution

- Scale up to 2 legs + pelvis (open loop squatting, stepping, walking motions -> done)
- Mechanical and control design of ORHRO arms
- Implementation and validation of the « robot » level of RTRMAC: complex architecture, parallel & non linear couplings, stabilizer control layer

Interfacing with ext. ctrl

Conclusion

Conclusion and perspectives

- Motor interface layer and robotics axis level are fully functional
- Prototype commissioning is extremely fast, projects are easily scalable
- Robot level is currently under development
- Next integration challenges:
 - Control of ORHRO's next version (coordination of 23 axes)
 - Embedding into power drive boards
 - Machine simulation and control with a digital twin (ITECA SmartUpp)

Thank you for your attention!

<u>Design of an open-robotics low-level framework</u> <u>for the control of complex mechatronics devices</u> RoBioSS team, Pprime Institute, Poitiers

> This work is sponsored by the ANR Labcom program (ANR-18-LCV2-0003)

MACH4 PIECA

