

The Effect of Vertical Motions on the Balance Recovery Prediction for Standing Humans through Linear MPC

Toufik Bentaleb ¹, Adrien Pajon ², Thomas Robert ¹ Pierre-Brice Wieber ³

¹ Univ Lyon, Université Claude Bernard Lyon 1, Univ Gustave Eiffel, IFSTTAR, LBMC, Lyon, France
 ² Research in Rehabilitation and Social Integration (CIRRIS), Université Laval, Québec, QC, Canada
 ³ INRIA Rhône-Alpes, 38334 Montbonnot Cedex, France

JNRH 2020

T. Bentaleb - June 26, 2020

Motivation

Université Claude Bernard

healthline.com

- emergency breaking in public transports
- person pushed down

douglascountyhomecareassistance.com

- degradation of the physiological capacities due to ageing or disease.
- etc.

EquiSim Project: Digital platform for studying mechanisms (mechanics, biomechanics, sensory, cognitive, psychological) involved in the human balance preservation and recovery.

• Balance-recovery reactions

- The strategies to maintain balance
 - ankle strategy
 - hip strategy
 - stepping strategy

- Regulation of the ankle strategy MAURER ET AL., 2006; MERGNER ET AL., 2003
- Regulation of the hip strategy Atkeson And Stephens, 2007; Park et al., 2004
- Using a predictive controller
 - choose actions over a time horizon Azevedo et al., 2002; Diedam et al., 2008
 - \circ controls walking with optimized step placement $$\rm H\, erdt\, \, et\, \, al., \, 2010$$
 - applied to balance recovery AFTAB ET AL, 2012
 - applied to balance recovery with proposition of a function based on the use of strategies VALLÉE ET AL, 2015

- Safe 3d bipedal walking through linear MPC with 3d capturability PAJON ET AL. 2019
 - Is their proposed mechanism relevant to use in balance recovery?
- Controller parameters for the young and elderly reactions $$\rm Aftab\ et\ al.,\ 2012,\ Vallée\ et\ al.,\ 2015$

Variable	Symbol	Value	Ref.
Body height	Н	1.75 m	Chaffin and Andersson (1984)
Body mass	m	75 kg	Chaffin and Andersson (1984)
CoM height	$h = 0.575 \times H$	1.012 m	Winter (1990)
Foot length	$l_f = 0.152 \times H$	0.26 m	Winter (1990)
Ankle to toe distance	$0.81 \times l_f$	0.21 m	Winter (1990)
Ankle to heel distance	$0.19 \times l_f$	0.05 m	Winter (1990)
Max trunk rotation	θ_{max} (forward)	$\pi/2$ rad	and the second sec
Min trunk rotation	θ_{min} (backward)	$-\pi/2$ rad	
Trunk inertia	j	8 kg.m ²	Winter (1990)
Max hip torque	τ_{max}	190 N.m	Chaffin and Andersson (1984)

Parameter	Value	
Body Height, H	1.57 m	
Body Mass	65 kg	
Foot length, lf	$0.152 \times H$	
Step preparation time, Tprep	150 ms (fixed)	
Reaction time, Treac	Varied between 75 and	
	150 ms	
Leg swing time, Tstep	Chosen by the controller	
Max foot acceleration, f'_{max}	Varied between 60 and	
	180 m.s ⁻²	
Max trunk rotation, θ_{max}	$\pi/3$ rad	
Max hip torque, τ_{max}	100 N.m	

Université Claude Bernard

 based on Newton-Euler equations of motion of the whole human

$$p^{x,y}=c^{x,y}-oldsymbol{\zeta}\ddot{c}^{x,y}\in ext{conv}\{s_i\}$$
 $oldsymbol{\zeta}=rac{c^z-p^z}{\ddot{c}^z+q}$

c Center of the Mass (CoM) position, p Center of the Pressure (CoP) \ddot{c} acceleration of CoM, ζ nonlinear term, x,y,z are coordinates of 3D vector where z is a vertical coordinate

and $conv \{s_i\}$ is the convex hull of the support foot i

Université Claude Bernard

 based on Newton-Euler equations of motion of the whole human

$$egin{aligned} m{p}^{x,y} &= m{c}^{x,y} - m{\zeta} \ddot{m{c}}^{x,y} \in ext{conv}\{s_i\}\ m{\zeta} &= rac{m{c}^z - m{p}^z}{\ddot{m{c}}^z + g} \end{aligned}$$

Université Claude Bernard

c Center of the Mass (CoM) position, p Center of the Pressure (CoP) \ddot{c} acceleration of CoM, ζ nonlinear term, x,y,z are coordinates of 3D vector where z is a vertical coordinate

and $\operatorname{conv} \{s_i\}$ is the convex hull of the support foot i

• The variation of ζ can be reasonably bounded during stepping motions

 $\underline{\boldsymbol{\zeta}} \leqslant \boldsymbol{\zeta} \leqslant \overline{\boldsymbol{\zeta}}$ Brasseur 2015

based on Newton-Euler equations of motion of the whole human

$$egin{aligned} m{p}^{x,y} &= m{c}^{x,y} - m{\zeta} \ddot{m{c}}^{x,y} \in ext{conv}\{s_i\}\ m{\zeta} &= rac{m{c}^z - m{p}^z}{\ddot{m{c}}^z + g} \end{aligned}$$

Release mechanism L L COM e^r CoP

Université Claude Bernard

c Center of the Mass (CoM) position, p Center of the Pressure (CoP) \ddot{c} acceleration of CoM, ζ nonlinear term, x,y,z are coordinates of 3D vector where z is a vertical coordinate

and $\operatorname{conv}\{s_i\}$ is the convex hull of the support foot i

• The variation of $\boldsymbol{\zeta}$ can be reasonably bounded during stepping motions

 $\underline{\boldsymbol{\zeta}} \leqslant \boldsymbol{\boldsymbol{\zeta}} \leqslant \overline{\boldsymbol{\boldsymbol{\zeta}}}$ Brasseur 2015

so we only have to check that

$$\{\ddot{m{c}}^{x,y} - \underline{\zeta}\ddot{m{c}}^{x,y}, \ddot{m{c}}^{x,y} - \overline{\zeta}\ddot{m{c}}^{x,y}\} \in \mathsf{conv}\{s_i\}$$

we impose that the vertical motion of the CoM satisfies

$$\underline{\boldsymbol{\zeta}}(\ddot{\boldsymbol{c}}^z+g)\leqslant \boldsymbol{c}^z-\boldsymbol{p}^z\leqslant \overline{\boldsymbol{\zeta}}(\ddot{\boldsymbol{c}}^z+g)$$

• which is equivalent to $l_{min}(\underline{\zeta}\ddot{c}^x) \leqslant c^x - p^x \leqslant l^{MAX}(\overline{\zeta}\ddot{c}^x) \xrightarrow{l_{min}} p^{MAX} \xrightarrow{r} x$

Université Claude Bernard

- Single step recovery
 - \circ inputs: lean angle heta, average subject anthropometry, step timings
 - comparison: maximum release angle vs vertical motion

Université Claude Bernard Gebuyon 1

MPC objective function formulation

minimize
$$\sum_{k=m}^{M} \mu_1 d_1(t_k) + \mu_2 d_2(t_k) + \mu_3 d_3(t_k) + \mu_4 d_4(t_k)$$
(1)
subject to (3) - (9) at all $t_k \in [t_m, t_M]$, $\mu_1, \mu_2, \dots, \mu_4$ are the weights (2)

minimizing the jerk parameter δ_k for the piecewise polynomial solutions

$$\begin{split} d_1 &= \left\| \delta_k \right\|^2 & \text{The piecewise polynomial solutions} \\ & \text{are of the form: } c(t) = \alpha'_k + \beta'_k \tau_k + \frac{\gamma_k}{2} \tau_k^2 + \frac{\delta'_k}{6} \tau_k^3 \\ & \text{with } \tau_k = t - t_k \text{ and constant parameters } \alpha'_k, \ \beta'_k, \ \gamma'_k \text{ and } \delta'_k. \end{split}$$

minimizing the deviation:

$$d_2 = \left\| \dot{\boldsymbol{c}}^x - \dot{\boldsymbol{c}}^x_{ref} \right\|^2; \ \ d_3 = \left\| \dot{\boldsymbol{c}}^y - \dot{\boldsymbol{c}}^y_{ref} \right\|^2$$

 $\dot{m{c}}_{ref}^{x,y}$ is the horizontal reference speed of CoM

keeping the CoP as close as possible to the center of the support foot i

$$d_4 = \left\| \boldsymbol{c}^{x,y} - \frac{1}{2} (\overline{\zeta} + \underline{\zeta}) \ddot{\boldsymbol{c}}^{x,y} - (s_i^{x,y} + \sigma_i^{x,y}) \right\|^2$$

 $\sigma_i^{x,\,y}$ is the horizontal translation from the ankle position $s_i^{x,\,y}$ to the foot center

Université Claude Bernard 6 Lyon 1

• Dynamic feasibility:

The CoP must lie in the convex hull of contact points

$$\{\boldsymbol{c}^{x,y} - \overline{\boldsymbol{\zeta}} \ddot{\boldsymbol{c}}^{x,y}, \boldsymbol{c}^{x,y} - \underline{\boldsymbol{\zeta}} \ddot{\boldsymbol{c}}^{x,y}\} \in s_i^{x,y} + \mathcal{S}$$
(3)

The vertical motion of the CoM satisfies

$$s_i \sim + S$$
 is the convex hull of the support foot i

$$\underline{\zeta}(\ddot{\boldsymbol{c}}^{z}+g) \leq \boldsymbol{c}^{z} - \boldsymbol{p}^{z} \leq \overline{\zeta}(\ddot{\boldsymbol{c}}^{z}+g)$$
(4)

with the hypothesis of no free falling

$$\ddot{\boldsymbol{c}}^z + g \ge 0 \tag{5}$$

and maximum swing leg acceleration

$$|\ddot{\boldsymbol{F}}| \le \ddot{f}_{max} \tag{6}$$

• Kinematic feasibility:

The maximum reachable region of the hip $A_i(\boldsymbol{c} - s_i) \leq b_i$ (7)

with some fixed matrix \boldsymbol{A}_i and vector \boldsymbol{b}_i linked to support foot i

maximum reachable region of foot
$$i \begin{array}{l} A_{i+1}(\boldsymbol{c}(t_i) - s_{i+1}) &\leq b_{i+1} \\ A_i(\boldsymbol{c}(t_{i+1}) - s_i) &\leq b_i \end{array}$$
 (8)

avoiding the foot overlay
$$\underline{S}^{x,y} \le s^{x,y}_{i+1} - s^{x,y}_i \le \overline{S}^{x,y}$$
 (9)

T. Bentaleb - June 26, 2020

Université Claude Bernard

one-step balance recovery strategy

- largely perturbed condition:
 - $\,\circ\,$ increasing the $({m\zeta},{m\zeta})$ interval leads to a more constrained displacement of the CoP
 - decreasing it leads to a more constrained vertical dynamics of the WBCoM

Conclusions

Université Claude Bernard

- Relevance
 - linear model predictive control scheme for bipedal walking and balance recovery
 - non-constraint vertical dynamics of the WBCoM
- Findings

• Limitations

Conclusions

Université Claude Bernard

Relevance

- linear model predictive control scheme for bipedal walking and balance recovery
- non-constraint vertical dynamics of the WBCoM

Findings

- $^\circ\,$ relatively small vertical motion of the WBCoM using high dynamics
- $^{\circ}\,$ proposed approach provide similar results to those obtained with a classical LIPM
- results obtained match quiet closely those observed in humans for both slightly and largely perturbed situations (walking and extreme balance recovery)
- Limitations

Conclusions

Université Claude Bernard

Relevance

- linear model predictive control scheme for bipedal walking and balance recovery
- non-constraint vertical dynamics of the WBCoM

Findings

- $^\circ\,$ relatively small vertical motion of the WBCoM using high dynamics
- proposed approach provide similar results to those obtained with a classical LIPM
- results obtained match quiet closely those observed in humans for both slightly and largely perturbed situations (walking and extreme balance recovery)

Limitations

- evaluating the method using different external physical model and multi-contact problems not considered
- non-linear approach not covered