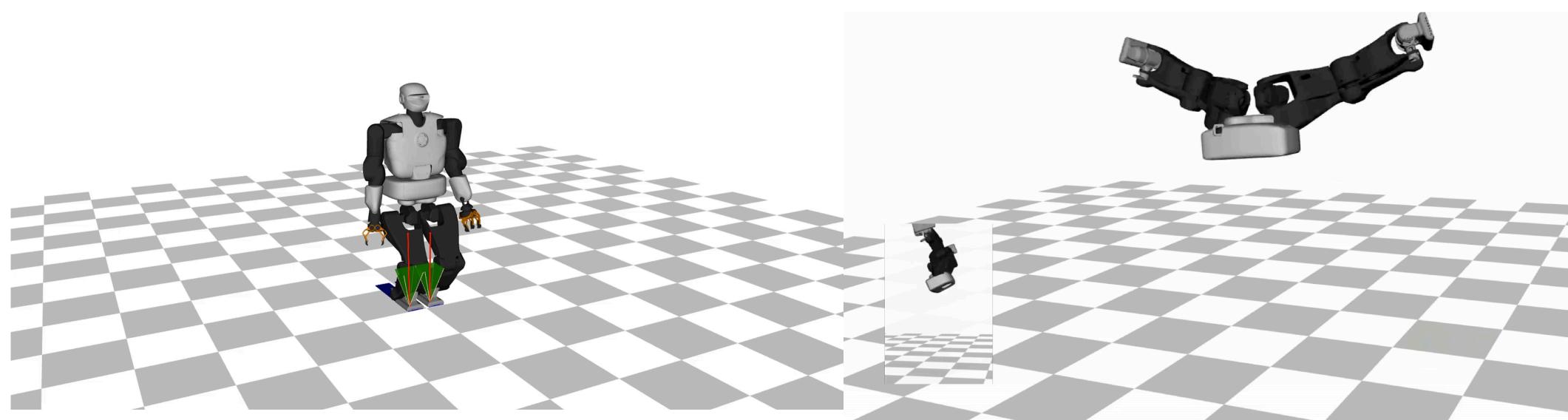
Crocoddyl: Fast computations, Efficient Solvers, Receding Horizon, and Learning



Rohan Amit Budhiraja Parag

EwenJustinCarlosDantecCarpentierMastalli

Nicolas Mansard

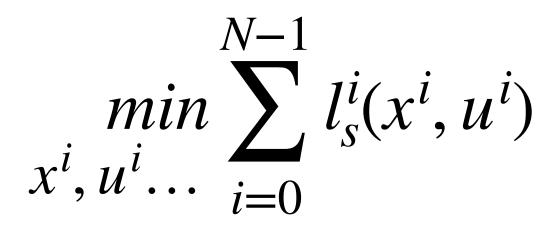
https://hal.archives-ouvertes.fr/hal-02294059

Crocoddyl: Contact RObot COntrol by **Differential DYnamic Programming Library**

Open-Source (BSD License) tool for Optimal Control, based on **Differential Dynamic Programming** based algorithms, and tailored for Legged Locomotion

Numerical Optimal Control

Discretized, finite dimensional, non-linear problem



such that

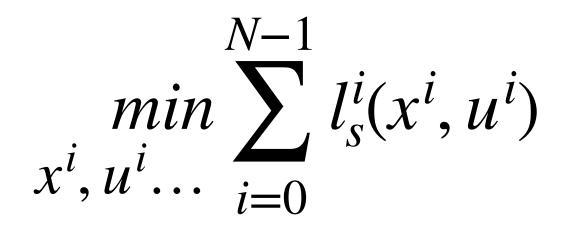
- $c_i(x^i, u^i) = 0$
- $h_i(x^i, u^i) \leq 0$ Inequality constraints

 $x^{i+1} = \mathscr{I}_{\mathfrak{s}}(x^i, u^i, \delta t)$ **Dynamics Constraint**

Equality constraints

Numerical Optimal Control

Discretized, finite dimensional, non-linear problem



 $x^{i+1} = \mathscr{I}_{s}(x^{i}, u^{i}, \delta t)$ such that **Dynamics Constraint**

 $x^0 = \hat{x}^0$

Initial Condition

Legged Locomotion Problem Main Challenges

Handling contact constraints

Handling sparsity in the problem

• for faster resolution

• to ensure feet placements are exactly satisfied.

Legged Locomotion Problem Main Challenges

- Handling contact constraints
 - to ensure feet placements are exactly satisfied.

Handling sparsity in the problem for faster resolution

nts is are exactly satisfied.

Legged Locomotion Problem **Contact Constrained Dynamics**

$\begin{bmatrix} M & J_k^T \\ J_k & 0 \end{bmatrix} \begin{bmatrix} \ddot{q} \\ -[f_k & \tau_k]^T \end{bmatrix}$

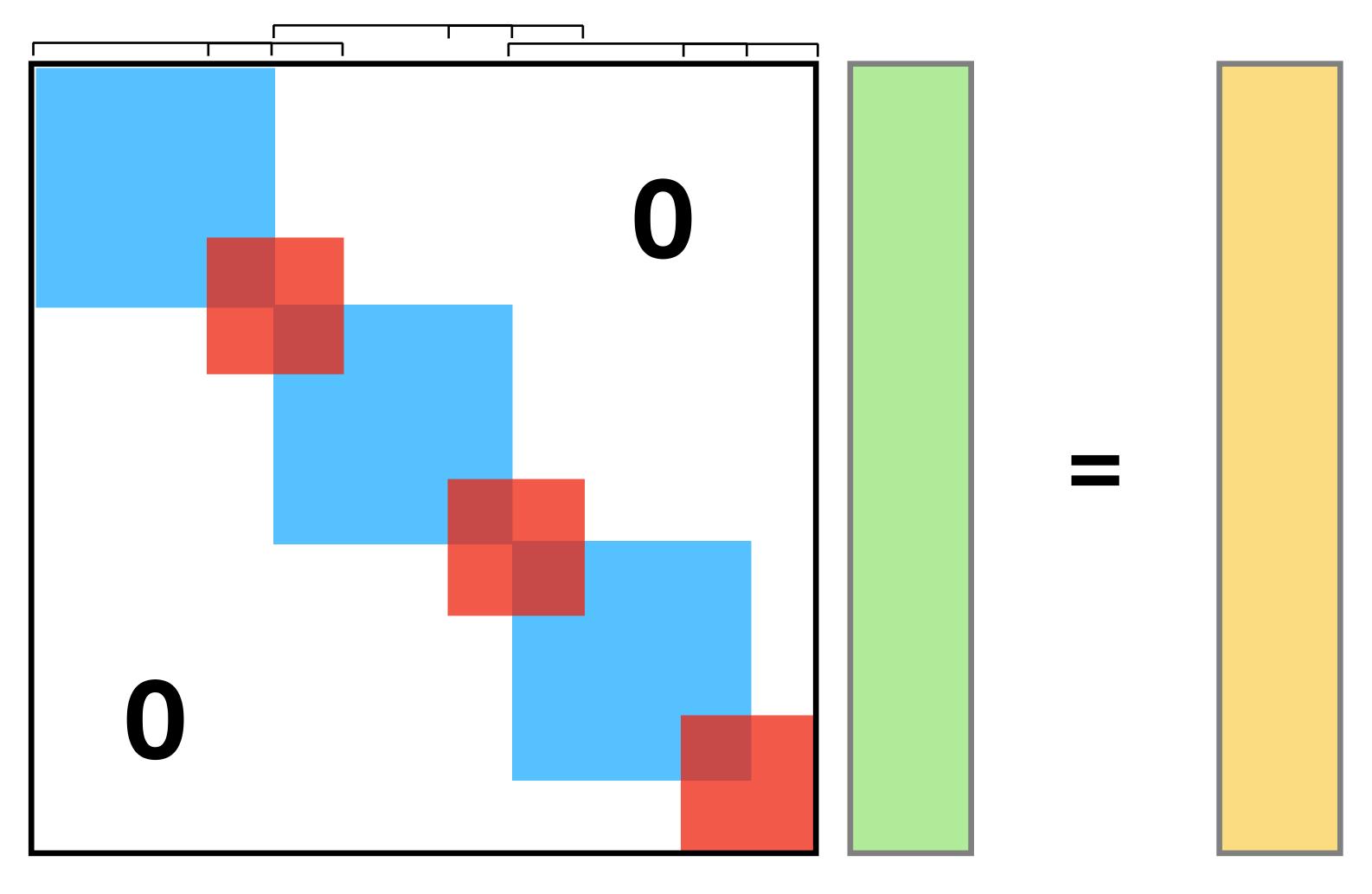
... and the derivatives of the contact constrained dynamics (Ongoing work discussed by Justin Carpentier)

$$\begin{bmatrix} S^T \tau - C \dot{\boldsymbol{q}} - g \\ -\dot{J}_k \dot{\boldsymbol{q}} \end{bmatrix}$$

Schultz et al., 2010 Budhiraja et al., 2018

Whole-body Problem Structure

To find the solution, we need to invert a sparse matrix like this

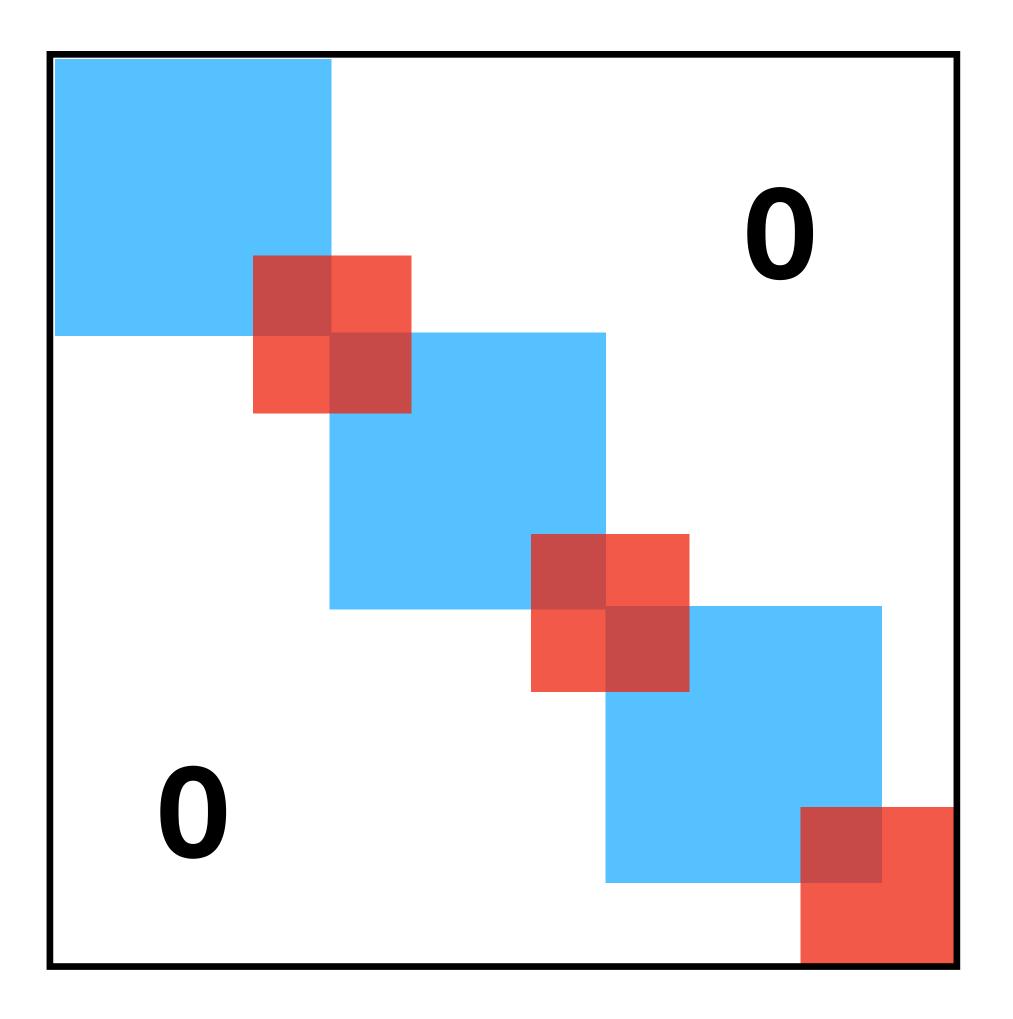


Sparsity of the Optimization Problem

Differential Dynamic Programming 101

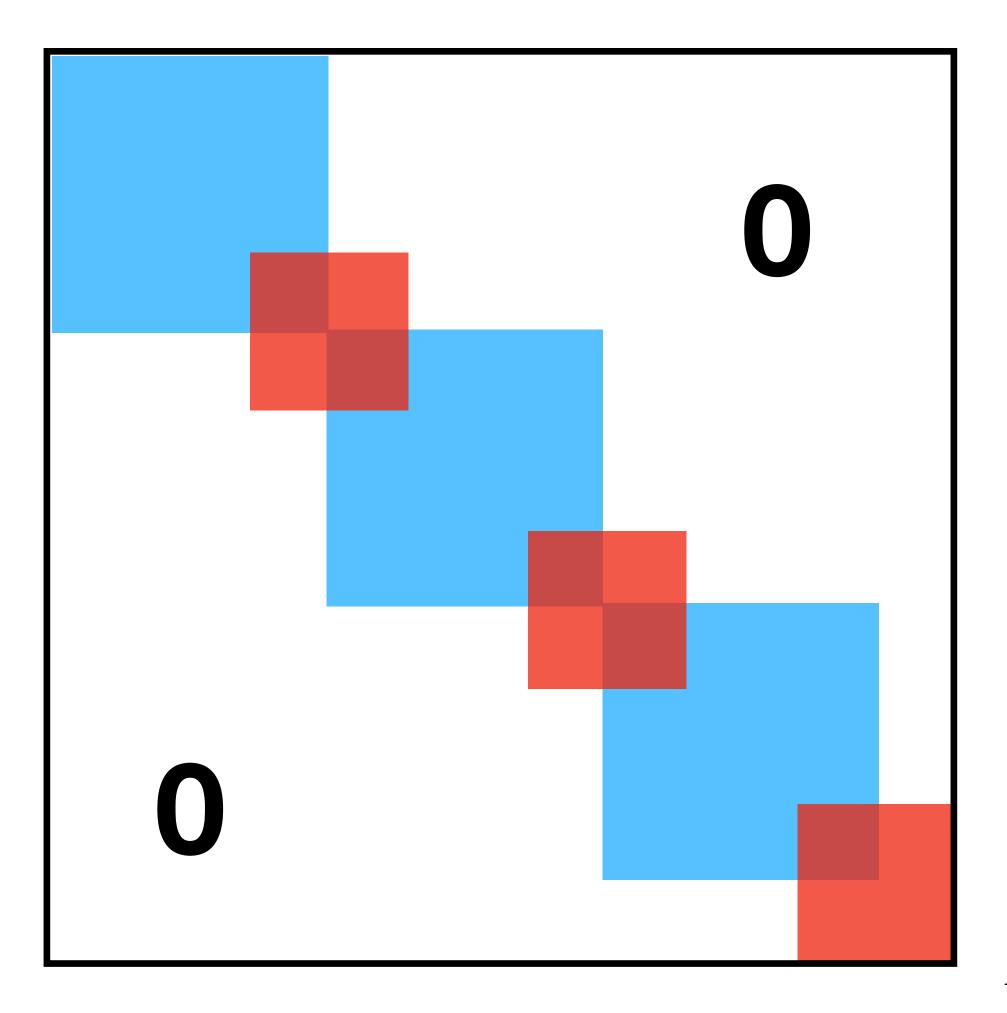
An efficient way to handle this sparsity

Iteratively invert one block at a time

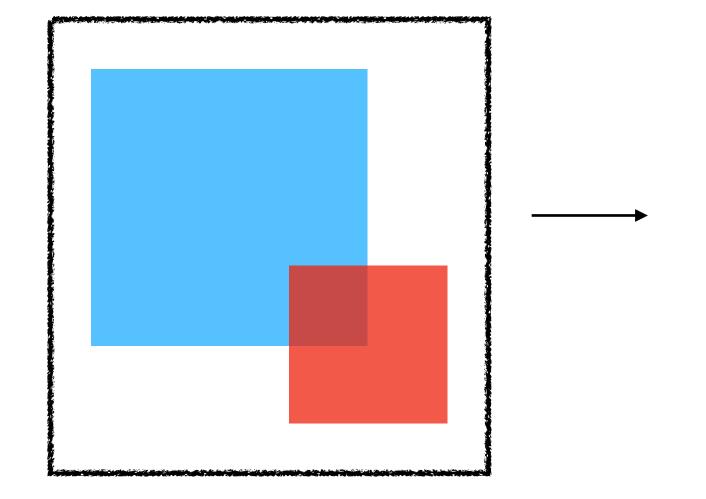


Differential Dynamic Programming 101

An efficient way to handle this sparsity

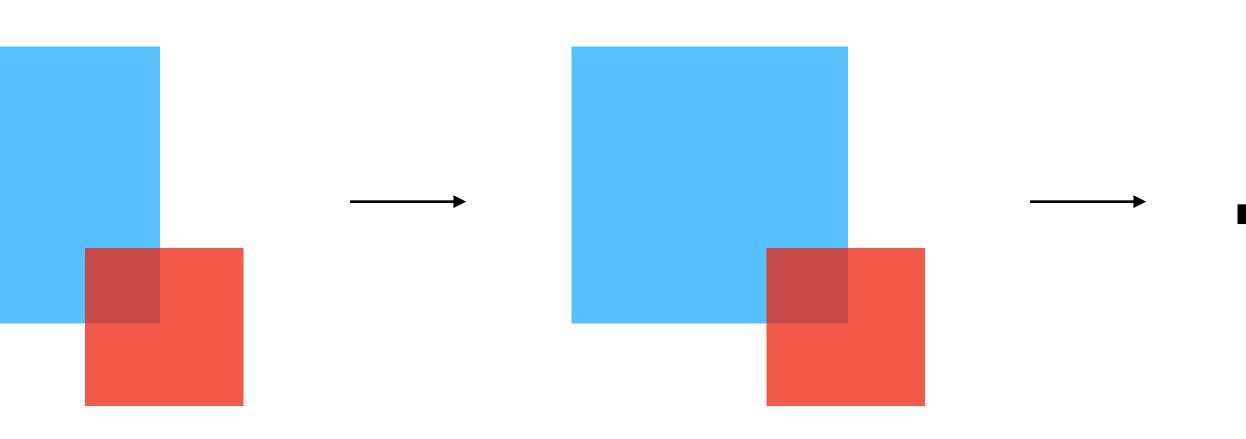


Crocoddyl: Simple API for DDP with Contact

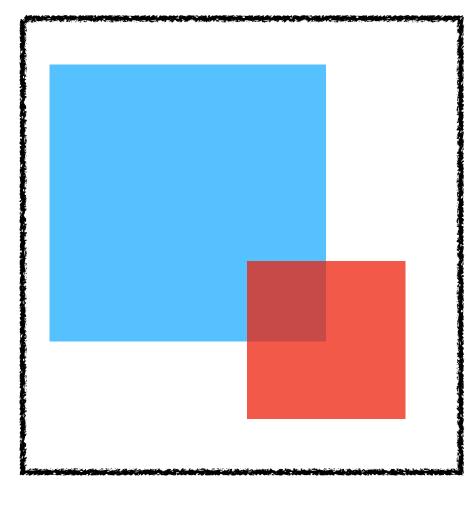


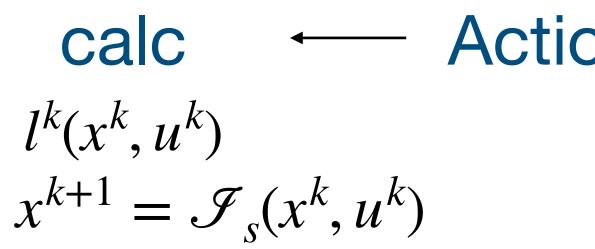
Action Model $l^k(x^k, u^k)$ $x^{k+1} = \mathscr{I}_{s}(x^{k}, u^{k})$

The Shooting Problem



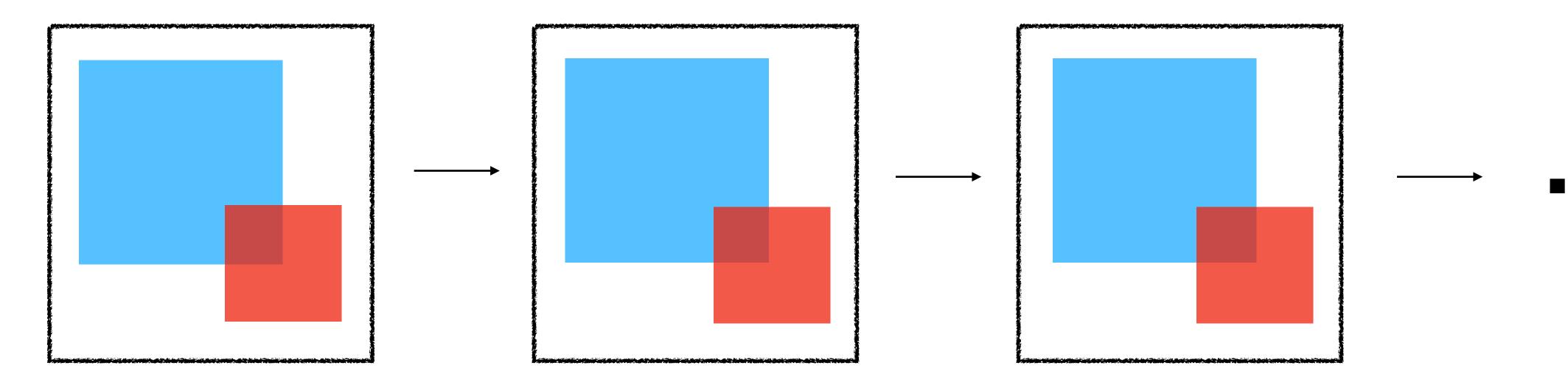
Crocoddyl: Simple API for DDP with Contact





The Shooting Problem

← Action Model → calcDiff $\frac{\partial}{\partial x}, \frac{\partial}{\partial u} \qquad \begin{array}{c} l^k(x^k, u^k) \\ x^{k+1} = \mathcal{F}_s(x^k, u^k) \end{array}$

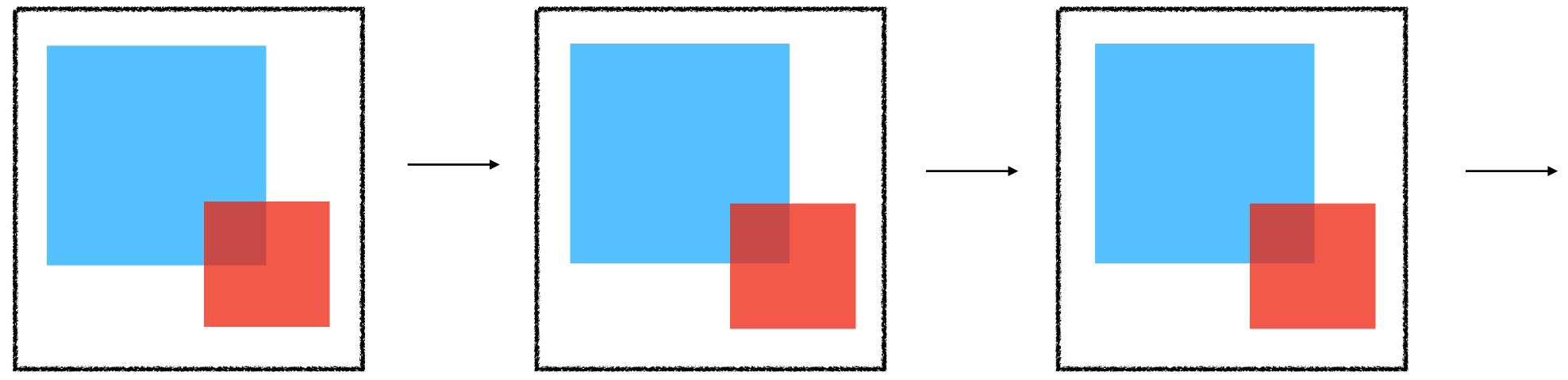


- template <typename _Scalar> 23
- class ActionModelAbstractTpl { 24

Crocoddyl: Fast Resolution of DDP

Code Generation Support

Fully Templatized Action Models on Scalar type. Highly efficient C source-code generation for calc and calcDiff computations



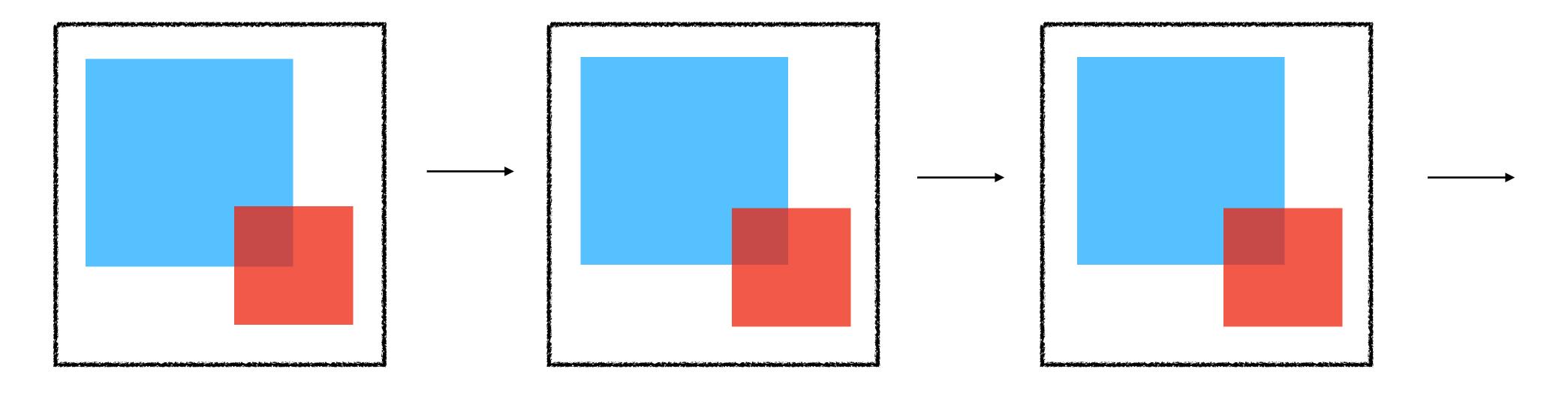
 \bigcirc computation of derivatives!

Crocoddyl: Fast Resolution of DDP

Multi-threading Support

Parallel Computation of the Derivatives 4 threads mean almost 4 times faster

Crocoddyl: Fast Resolution of DDP Box Control Constraints



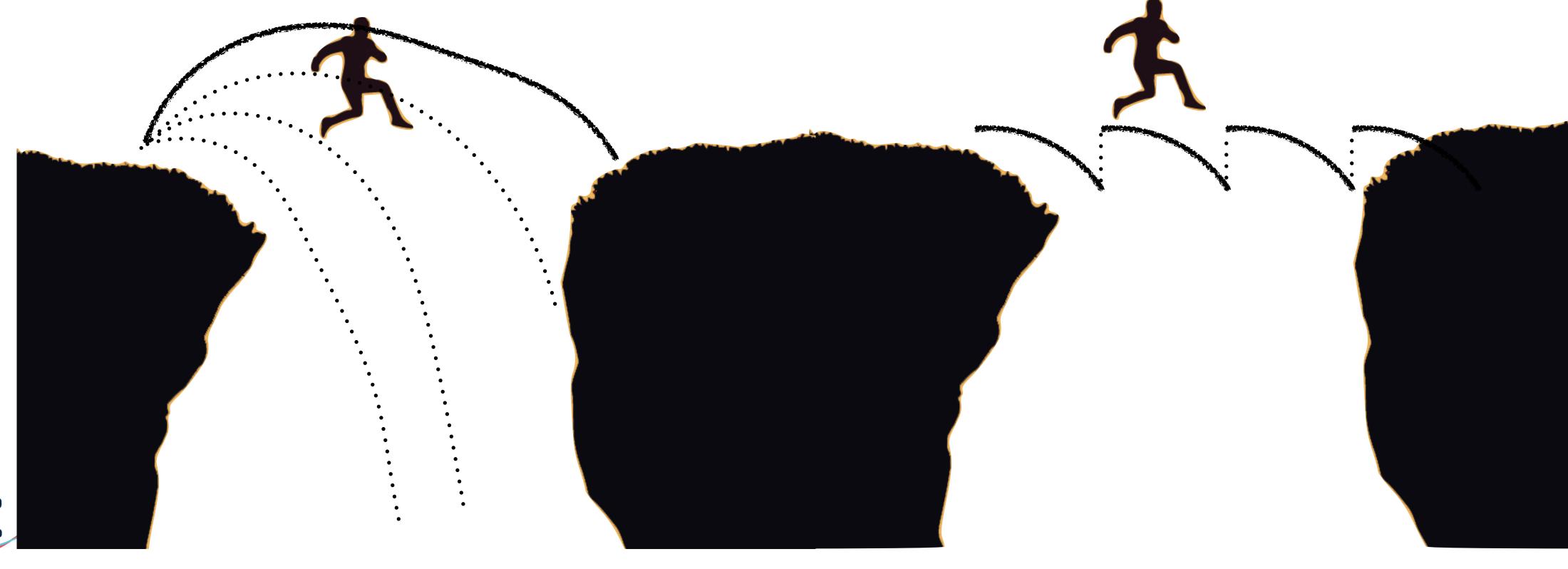
 $u_l^i \leq u^i \leq u_u^i$

Control inside bounds

 Box-DDP: Variation of DDP that handles Box constraints on control variables.

Tassa et.al, 2014

Crocoddyl: Feasibility-Driven DDP



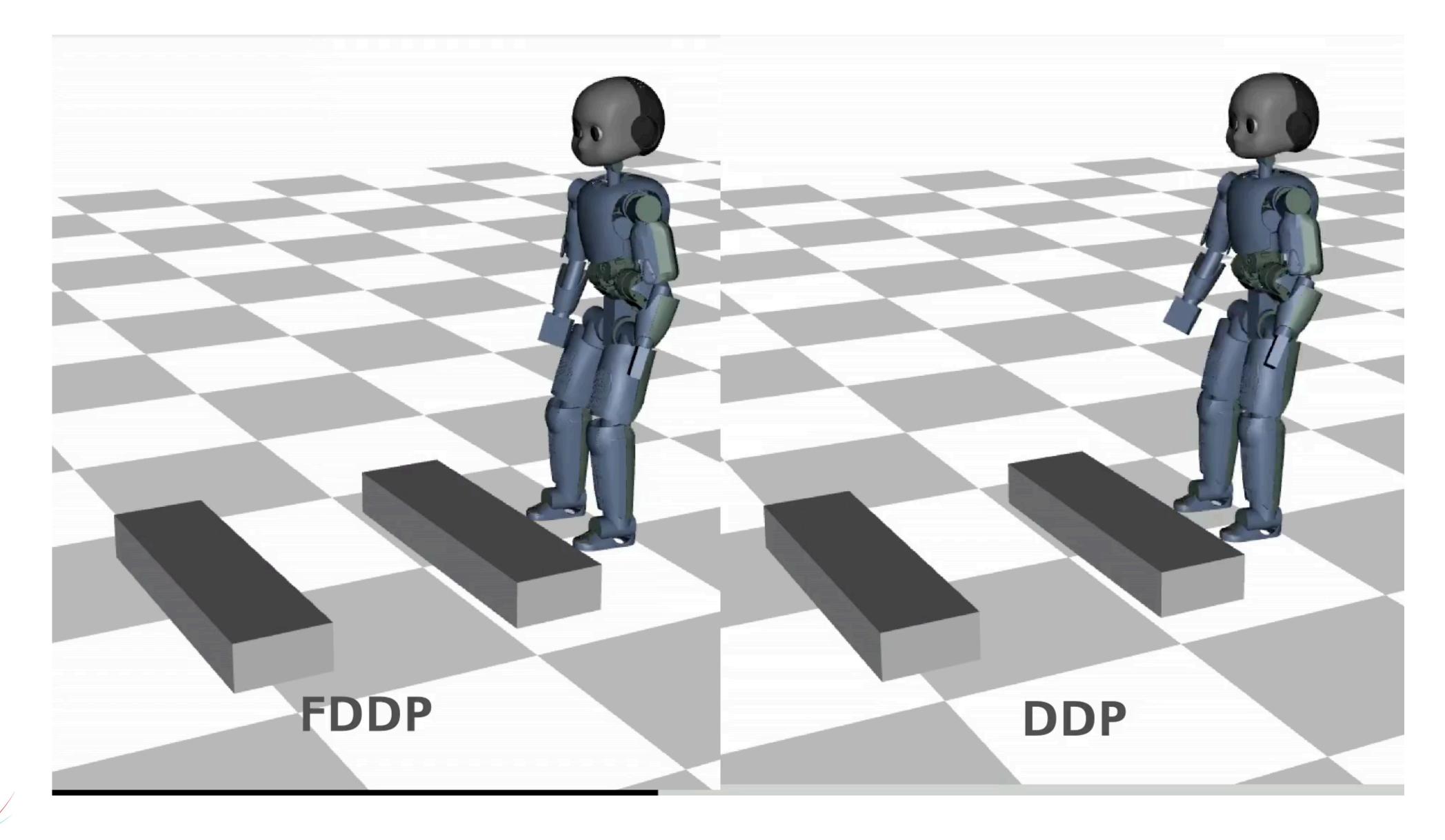
Multiple-shooting with DDP

Crocoddyl: Feasibility-Driven DDP

Multiple-Shooting: Gaps vs Objectives?

No need for merit function between gaps and objectives. Warm start with an infeasible trajectory and optimize. Once the solution becomes feasible, exactly the same as DDP

Multiple Shooting



Benchmarks

Horizon

CPU Info

Code-Generated

Multithreading

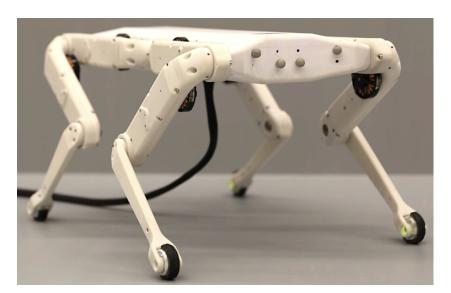
for one iteration of the solver

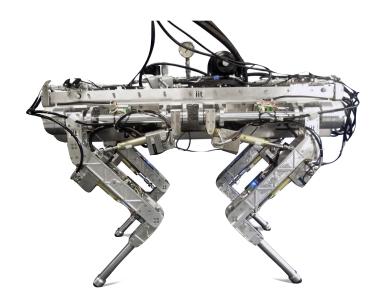
100 Nodes

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

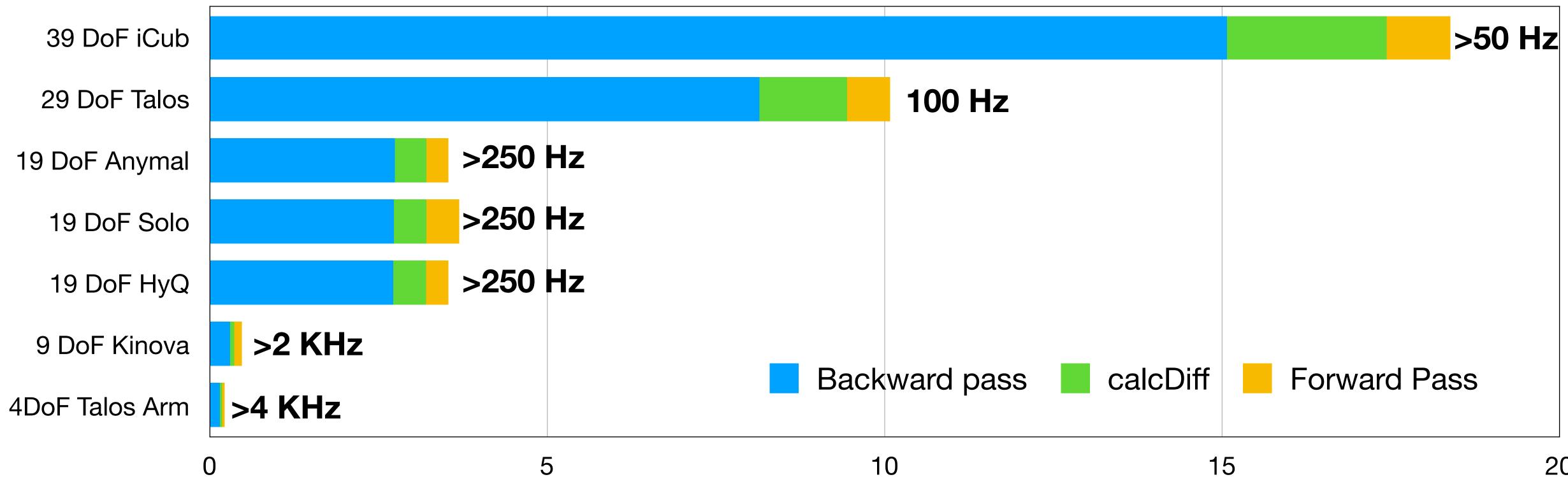
Yes

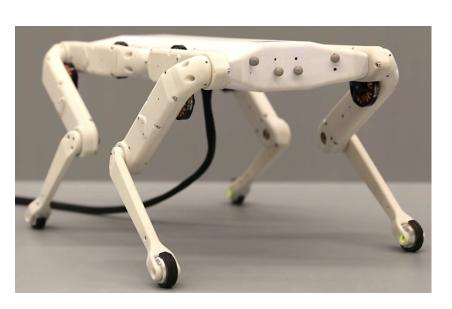
6 threads

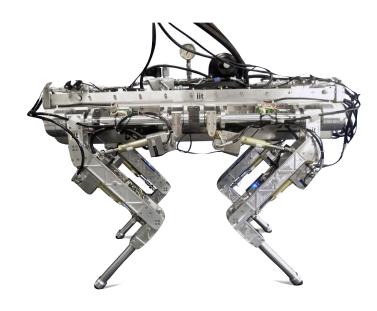




Benchmarks

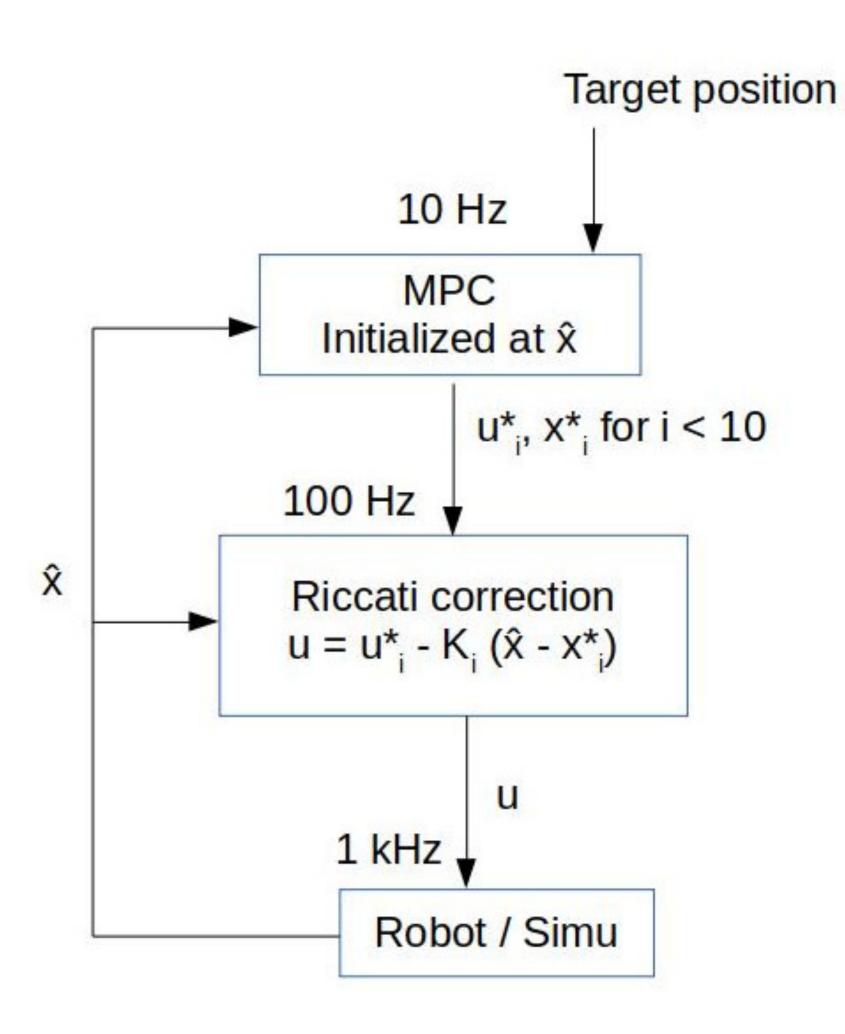




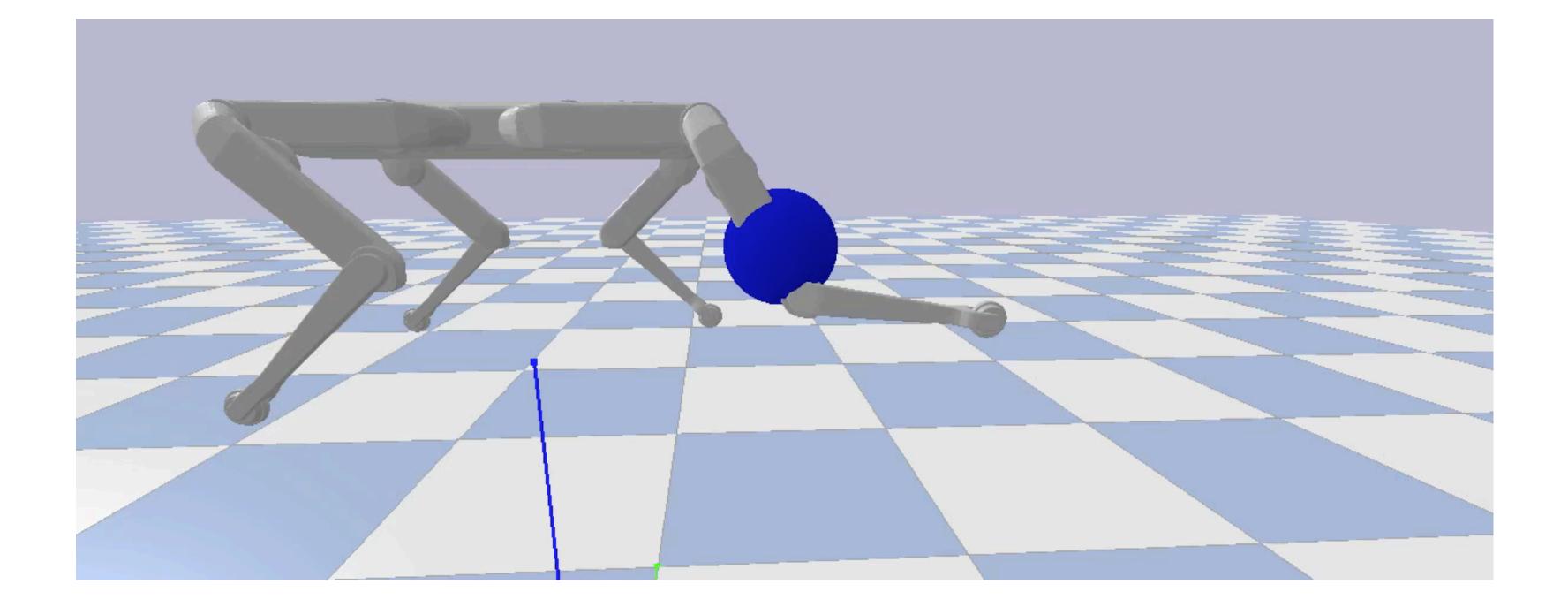


Application: Model Predictive Control

Action Model

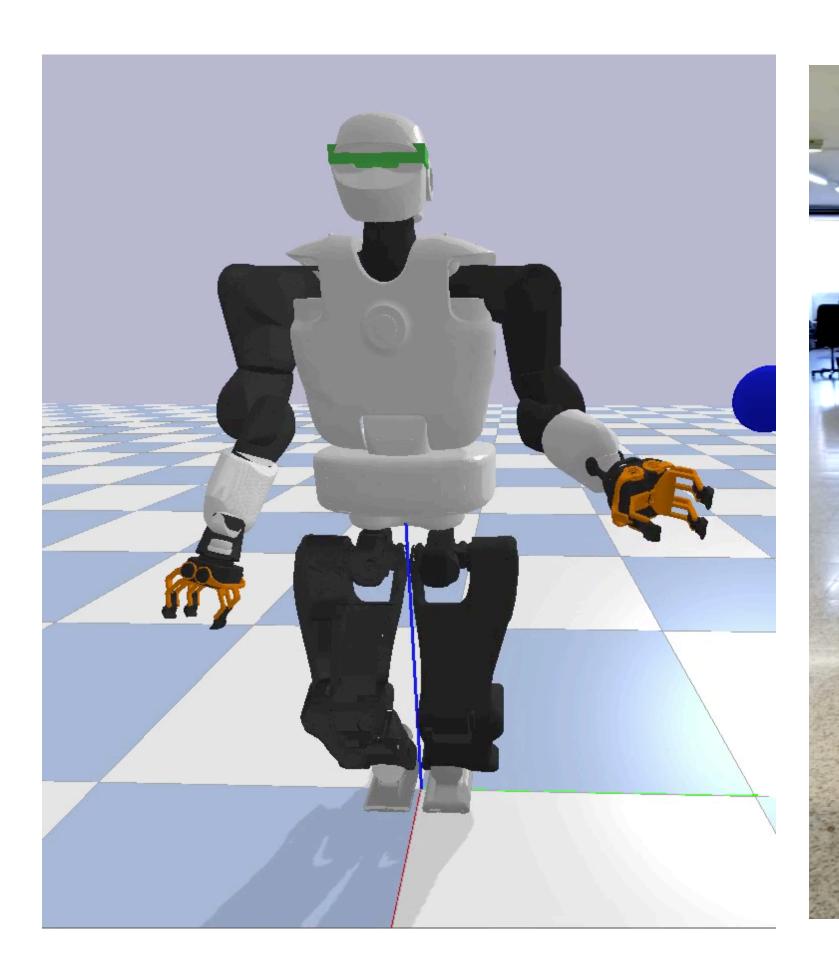


Application: Model Predictive Control



Tracking a Ball by MPC

Application: Model Predictive Control

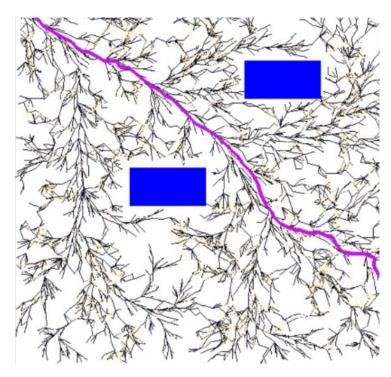


Tracking a Circle by MPC

Tracking a Circle by MPC

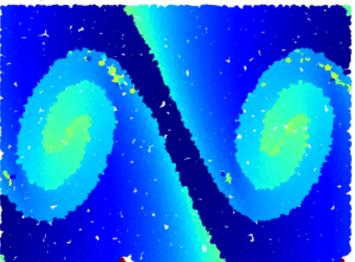
Tracking a Circle with external disturbances

Iterative RoadMap Extension and Policy Approximation



Kino-dynamic Probabilistic Roadmap *30-50 states, dense connect*

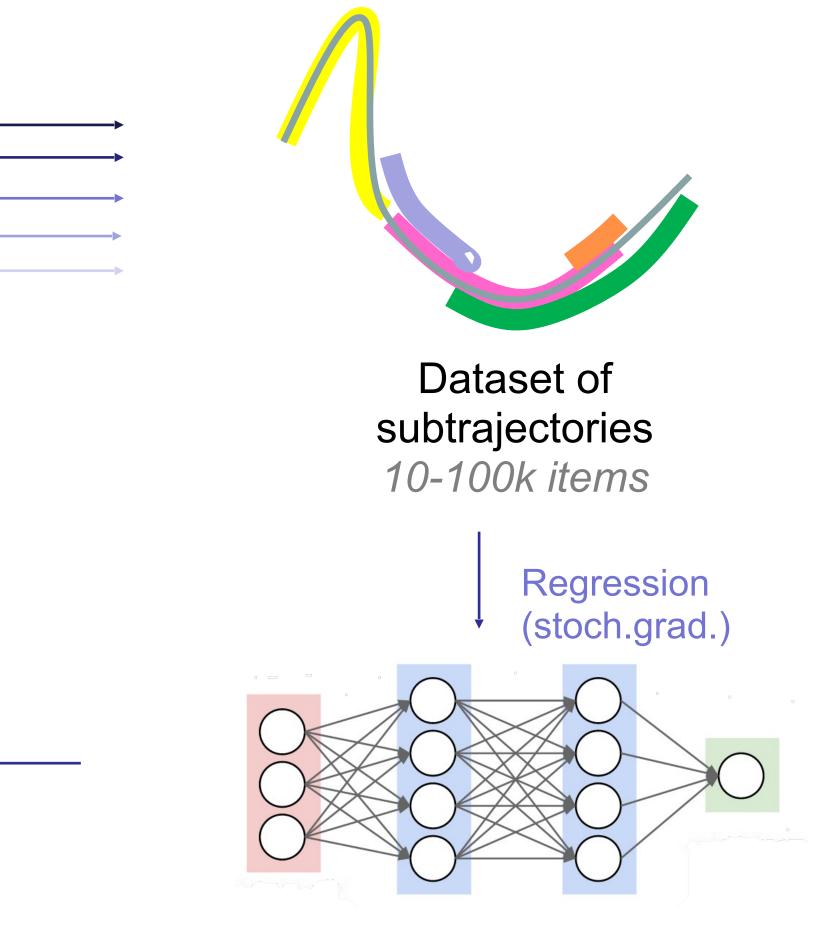
> Roadmap extension



Sampling

Query

HJB approximation Value function as metric Policy function as warm-start



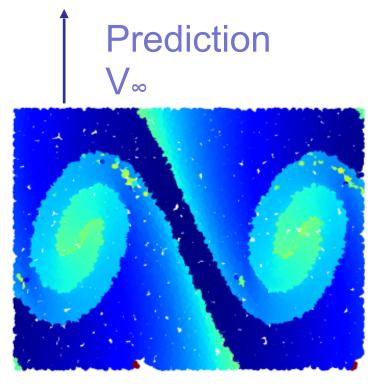
Neural network 2x512 hidden units

Mansard et.al, 2018

Modified IREPA: Iteratively Learning and Extending Horizon

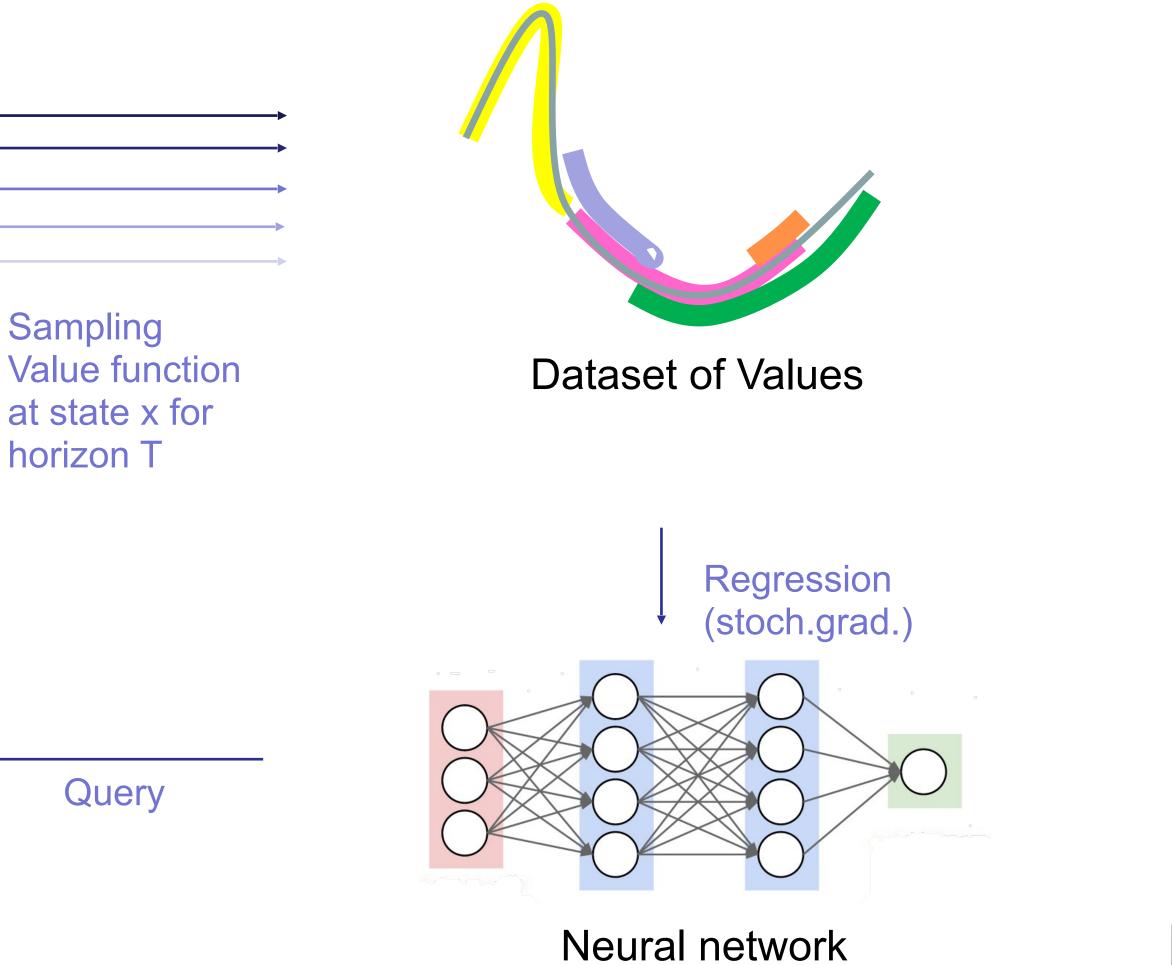
Crocoddyl $V_{\infty}: x \rightarrow V(x, T, V_{\infty}(x))$

Optimal Control Solution Unicycle, state dim 3

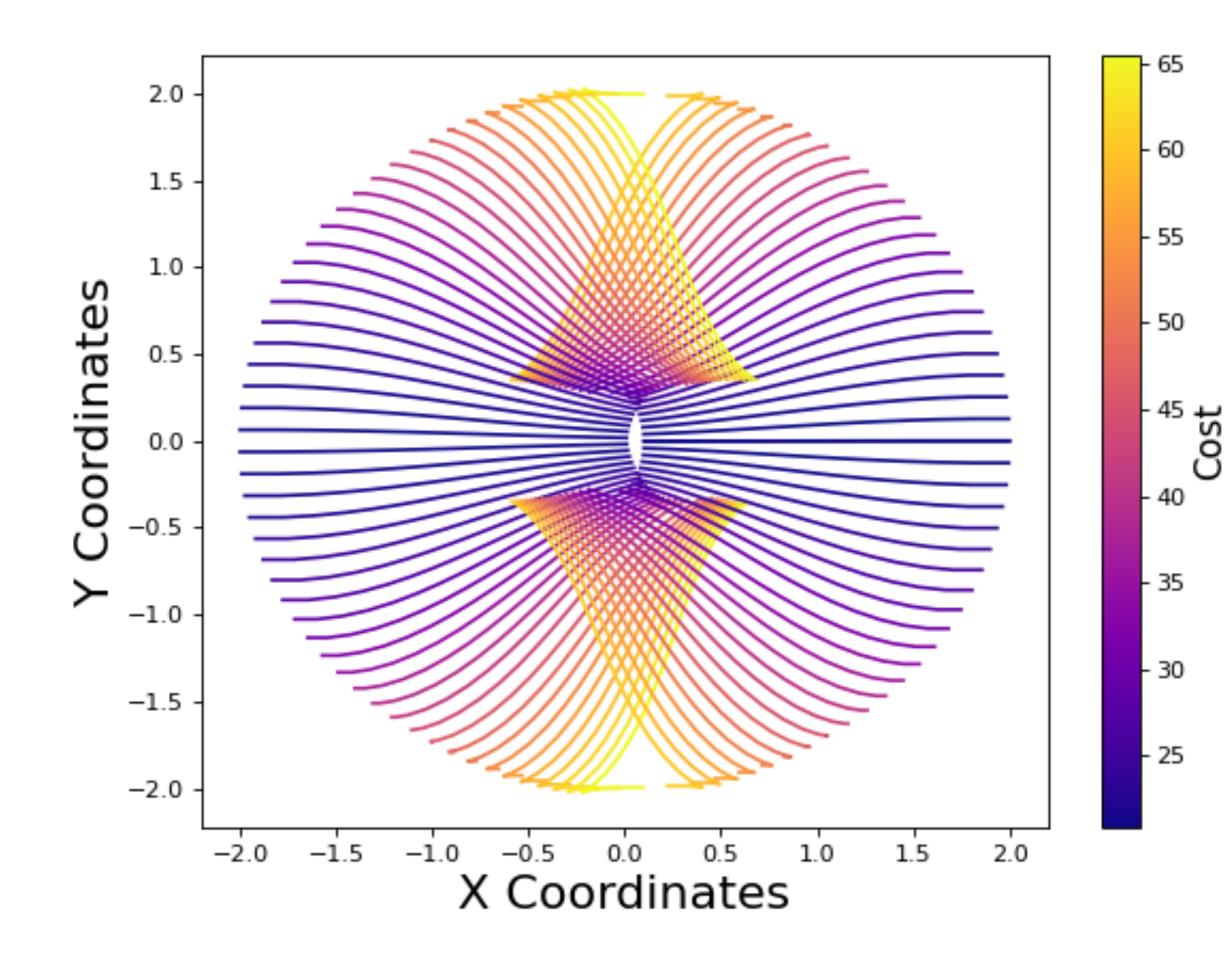


HJB approximation Value function as metric

 $V_{\infty}: x \to 0$

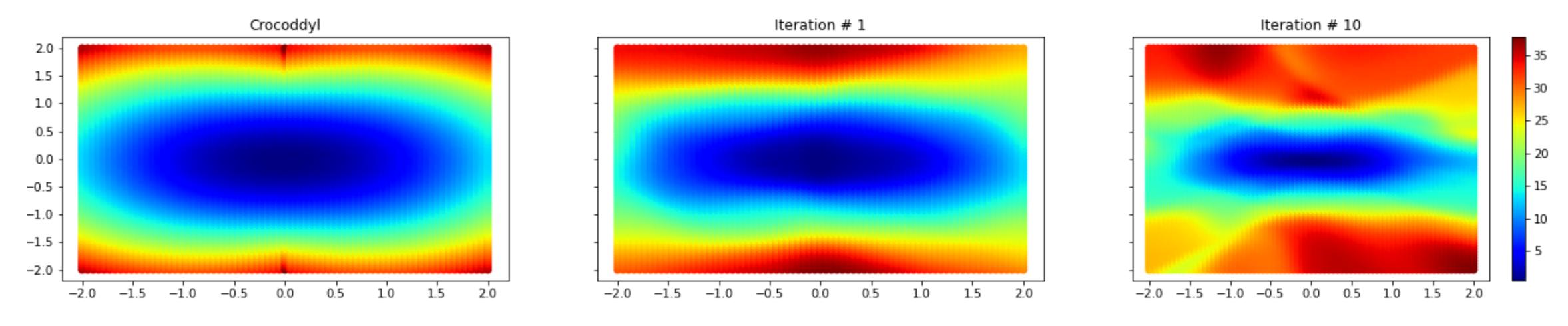


Modified IREPA: Iteratively Learning and Extending Horizon



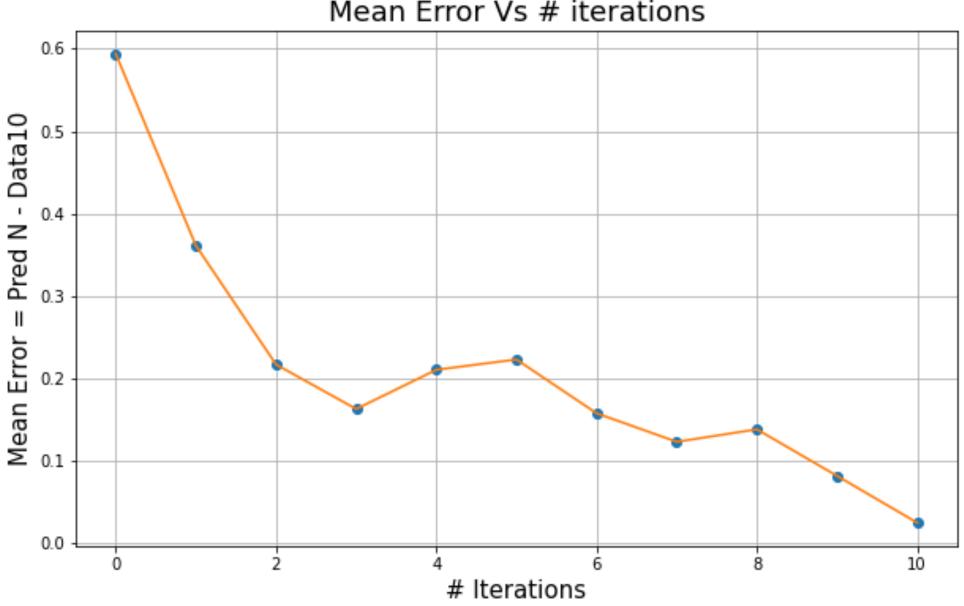
Trajectory and costs for unicycle starting at circle and going to centre

Modified IREPA: Iteratively Learning and Extending Horizon



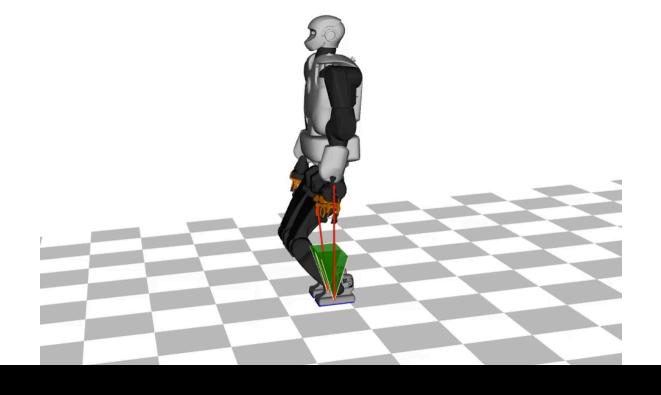
Value Function Scatter Plot for Crocoddyl (IREPA0), IREPA1, and IREPA10 iterations

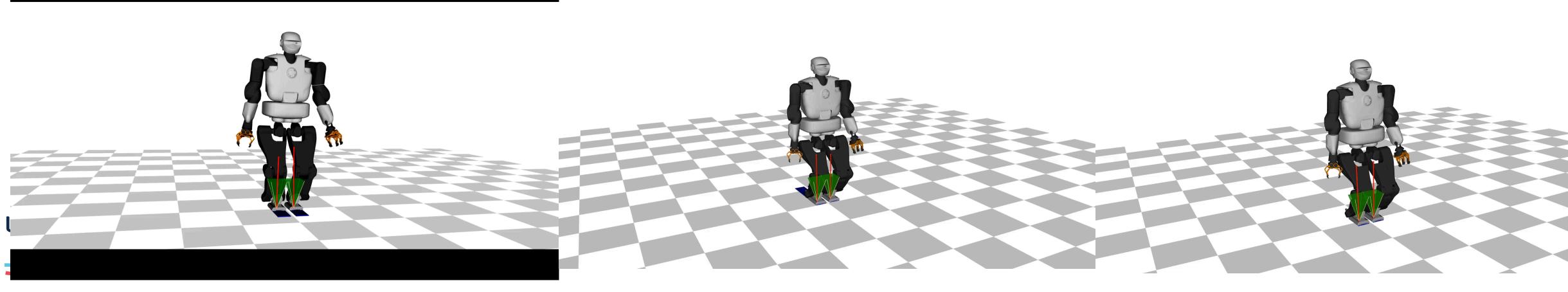
Convergence of the Scheme



Mean Error Vs # iterations

Thank you!





Bipedal walking (60 cm stride)

