How to reconcile path planning and visual
servoing through manipulation tasks

Florent Lamiraux

CNRS-LAAS, Toulouse, France

Position of the problem

We want to robustly perform manipulation tasks with a robot
» with many degrees-of-freedom,

> moving in a cluttered environment,

» subject to kinematic and dynamic contraints.

Position of the problem

We have models of
> the robot,
>
>

Position of the problem

We have models of
> the robot,
» the environment,
>

Position of the problem

We have models of
» the robot,

» the environment,

> the objects.

Position of the problem

We want to robustly perform manipulation tasks with a robot
» with many degrees-of-freedom,
> moving in a cluttered environment,

P subject to kinematic and dynamic contraints.

Position of the problem

We want to robustly perform manipulation tasks with a robot
» with many degrees-of-freedom,
> moving in a cluttered environment,

P subject to kinematic and dynamic contraints.

» Visual servoing,

Position of the problem

We want to robustly perform manipulation tasks with a robot

>
>
>

with many degrees-of-freedom,
moving in a cluttered environment,

subject to kinematic and dynamic contraints.

Visual servoing,

motion planning (random sampling)

Position of the problem

We want to robustly perform manipulation tasks with a robot
» with many degrees-of-freedom,
> moving in a cluttered environment,

P subject to kinematic and dynamic contraints.

» Visual servoing,

» motion planning (random sampling)

Little work combine motion planning and visual servoing.

Contribution

» An original methodology to integrate visual servoing and
motion planning together.

Contribution

» An original methodology to integrate visual servoing and
motion planning together.
» going beyond previous work :

> Y. Mezouar and F. Chaumette, “Path planning for robust image-based control,” IEEE TRO, 2002

Manipulation planning

Manipulation planning

Manipulation planning

Definitions

A manipulation motion is a motion
> implying
» one or several robots
P one or several objects

Manipulation planning

Definitions

A manipulation motion is a motion
> implying
» one or several robots
P one or several objects

P in such a way that each object

» either is in a stable pose,
» or is moved by a robot.

Manipulation planning

Composite robot

Kinematic chain composed of each robot and each object

object

= (905 »Gnps Gnp+1s - * > Gnp47)

Manipulation planning

Composite robot

Kinematic chain composed of each robot and each object

object

Sy Gnp4ls > Gnp4T)

The configuration space of the composite robot is the Cartesian
product of the configuration spaces of the robots and objects.

C = Crl x C % 5E(3)nb objets

Inb robots

Manipulation planning

Numerical constraints

Manipulation constraints can be expressed numerically.

» Numerical constraints :

me N,
f(q) - 07 fe CI(C,Rm)

» Parameterizable numerical constraints :

m e N,
f(a)=fo, feCHC,R™)
fo € R™

Manipulation planning

Example : a robot manipulating a ball

C =[—n,7]° x SE(3) (1)
q :(q07q17q27q37q47q57 (2)
Xbs Ybs Zby Xby Ybs Zb, Wp) (3)

Two states :

P> placement : the ball lies on the
table,

» grasp : the ball is grasped by
the gripper.

Manipulation planning

Example : a robot manipulating a ball

Each state is defined by a numerical
constraint :

> placement

zp =0

Manipulation planning

Example : a robot manipulating a ball

Each state is defined by a numerical
constraint :

> placement

zp =0
> grasp
Xb
Xgripper(q07 T ,Q5)— Yb =0
Zp

Each state is a sub-manifold of the composite configuration space.

Manipulation planning

Example : a robot manipulating a ball

Numerical motion constraints

Two types of motions :

> transit : the ball is lying still
on the table,

> transfer : the balle moves
with the gripper.

Manipulation planning

Example : a robot manipulating a ball

Numerical motion constraints

» transit
Xp = X .
b O 1 parameterizable
Yo = Y0
z,=0 } simple
» transfer
Xb
xgripper(q07 to 7q5) - Yb =0
Zp
-1 .
Rgripper Rb - RO

Manipulation planning

Foliation

Motion constraints define foliations of the admissible configuration
space (grasp U placement).

» f : position of the ball

ffff Li(A) = {a € C.F(a) — £}
<</ .

» g : grasp of the ball

Lg(0) = {aq €C,g(q) =0}

Manipulation planning

General case

In a manipulation planning problem,
» the state of the system is subject to
» numerical constraints,
P the trajectories of the system are subject to

» parameterizable numerical constraints, the dimension of the
parameter may be smaller than the dimension of the
constraints,

Manipulation planning

General case

In a manipulation planning problem,
» the state of the system is subject to
» numerical constraints,
P the trajectories of the system are subject to
» parameterizable numerical constraints, the dimension of the
parameter may be smaller than the dimension of the

constraints,
» the parameter value is constant along trajectories

Manipulation planning

Constraint graph

A manipulation problem can be represented by a manipulation
graph.
» The nodes or states contain numerical constraints.

» The edges or transitions contain parameterizable constraints.

Grasp ball

Transit Placement Transfer

Release ball

Manipulation planning

Algorithms

Manipulation RRT

drand
L]

Manipulation RRT

Grand = shoot_random_config()

Manipulation planning

Algorithms

Manipulation RRT

drand
°

Manipulation RRT

Grand = shoot_random_config()

Qnear = nearESt,neighbour(qrand, tree)

Manipulation planning

Algorithms
Manipulation RRT

drand
°

Manipulation RRT

near
Grand = shoot_random_config()
Qnear = nearESt,neighbour(qrand, tree)

fo = select_next_state(gnear)

Manipulation planning

Algorithms
Manipulation RRT

Manipulation RRT

Grand = shoot_random_config()
= nearest_neighbour(gang, tree)
fo = select_next_state(gnear)

Aproj = project(q,a,,d, fe)

Manipulation planning

Algorithms
Manipulation RRT

Manipulation RRT

Grand = shoot_random_config()

= nearest_neighbour(gang, tree)
fo = select_next_state(gnear)

Gproj = Project(rand, fe)

Gnew = extend(gnear, proj)

Manipulation planning

Algorithms

Manipulation RRT

Manipulation RRT

Grand = Sshoot_random_config()

Qnear = nearest_neighbour(qrangd, tree)
(fo = select_next_state(qnear)

Gproj = Project(Grand, fe)

Gnew = extend(qnear, Gproj)

tree.insert_node(qnear, Gnew)

Manipulation planning

Constraint graph and configuration space

Ly, (9)

o5 Ly(f)
L)(f) 2 constraints on motion

Ls)(f) > f : position of the object.
> g : grasp of the object.

Manipulation planning

Constraint graph and configuration space

L b . .
o (9) 2 constraints on motion

Lo (9) L Lp)(f) » f : position of the object.
Ly, (f) » g : grasp of the object.

Ly)(f)

Manipulation planning

Constraint graph and configuration space

L,))
7 (9) 2 constraints on motion
Lya(9) . Lp/(f) > f : position of the object.

. Ly, (f) » g : grasp of the object.

Ly)(f)
=080,

f

Manipulation planning

Example

Manipulation planning

Waypoints states

Intermediate states in the constraint graph

release transition

gr(g1, hi,1) t g2 > hy1lgr(g1, h1,1)lpg

gr(g1s hi,1)
n

gr(g2, h2,1)

@4

grasp transition

Manipulation planning

Waypoints states

Intermediate states in the constraint graph

g1 > hy,1|pl(o1)lpg

release transition 4< T) (l >igrasp transition

g1 > hi1lpl(o1)lgp

<
put transition4< T > (L }Iift transition
< >

g1 > hy1lpl(e1)lpp

gr(g1, h1,1,)

Motion control

Motion control

Motion control

Hierarchical task based controller

Task
» model : mapping T from C,op to T (vector space or SE(3)),

Motion control

Hierarchical task based controller

Task
» model : mapping T from C,op to T (vector space or SE(3)),

> reference : smooth mapping T* from | C R to T, desired
trajectory of the task,

Motion control

Hierarchical task based controller

If the model of the task is perfect and T = R™

e(q,t) £ T(q) — T(t)

Motion control

Hierarchical task based controller

If the model of the task is perfect and T = R™

e(q,t) £ T(q) — T(t)

oT .
aqq
We wish to achieve € = —\e
oT™ .
= — (T =\
q 24 (£)

Motion control

Hierarchical task based controller

If the model of the task is perfect and T = R™

e(q,t) £ T(q) — T(t)

oT .
aqq
We wish to achieve € = —)¢ :
. oT™ .

u € R™ np<m

Motion control

Hierarchical task based controller

If the model of the task is perfect and T = R™

e(a,t) = T(a) — T7(t)

Motion control

Hierarchical task based controller

If the model of the task is perfect and T = R™

e(a,t) = T(a) - T*(t)
If Tis a measure of T through sensors,

e(t) £ T(t) — T*(1)

Motion control

Hierarchical task based controller

If the model of the task is perfect and T = R™

e(a,t) = T(a) - T*(t)
If Tis a measure of T through sensors,

e(t) £ T(t) — T*(1)

Motion control

Hierarchical task based controller

» Given tasks T1, Tp,--- in decreasing order of priority,

P a hierarchical task based controller iteratively computes q in
order to

Motion control

Hierarchical task based controller

» Given tasks T1, Tp,--- in decreasing order of priority,
P a hierarchical task based controller iteratively computes q in
order to

P achieve at best the decreasing ratio of the current task,
> without affecting the decreasing ratio of the previous tasks.

Motion control

Output of manipulation planning

A sequence of paths along transitions linking states (including
waypoints)

Motion control

Output of manipulation planning

A sequence of paths along transitions linking states (including

waypoints)
C
r(t)
to [l) t3
Toa | Ti2 | Tn |
Tor | Tu | T |
controller 0 controller 1 controller 2

To each transition, we associate a hierarchical controller.

Motion control

Hierarchical task based controller

decreasing priority

task m

task m — 1

task 2

task 1

posture task

transition specific tasks

system specific task

» system specific task :
P quasi-static equilibrium,
» position of the base

> posture task : € = q— q*(t)
> q*(t) : planned trajectory

Motion control

Transition specific tasks

transition specific task T

grasp or release | object/gripper SE(3)
put or lift object/contact surface | SE(3)
dual grap gripper 1 / gripper 2 SE(3)

» T :as much as possible, the above relative positions are
measured through visual features,

> visibility of these features can be enforced through constraints
at the manipulation planning step.

Implementation

Implementation

Implementation

Humanoid robot manipulating a box

» Humanoid Path Planner
> Agimus

» Stack of Tasks

» ROS

Implementation

Humanoid Path Planner

Open-source software platform for motion planning
» manipulation planning

» Automatic construction of constraint graph from a set of
grasps.

» acyclic contact planning for multiped robots (hpp-rbprm)
https://humanoid-path-planner.github.io/hpp-doc

https://humanoid-path-planner.github.io/hpp-doc

Implementation

Stack of Tasks

Open-source software platform for redundant robot motion control
» hierarchical task based controllers
https://stack-of-tasks.github.io

https://stack-of-tasks.github.io

Implementation

Work in progress

Implement drilling operations in a factory environment.

AOB4FAM

Implementation

acknowledgements

Agence National

memmo

/\C
PROJET J RS
ROMED [y~ i

	Manipulation planning
	Motion control
	Implementation

