An original walking composed of a ballistic single-support and a finite time double-support motions.
 JNRH 2020, 26-27 June 2020

Y. Aoustin ${ }^{1}$ and A. Formal'skii ${ }^{2}$
${ }^{1}$ France Nantes, LS2N, University of Nantes, ${ }^{2}$ Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia

June 24, 2020

Motivation and strategy

Motivation.

- To define a walking motion with single support motion and a finite time double support motion.
- The planar biped has two identical legs, a trunk and two massless feet.

Strategy.

- The motion of the single support is defined with a boundary value problem combining position and speed conditions.
- During the single ankle torque controls the motion of the CoP
- During the double support the two feet rotate.

Presentation outline

Statement of problem.

- The walking motion.
- Mathematical model and design of the walking.
- Single-support motion: Boundary value problem with condition in position and velocities.
- Double-support motion: problem definition.
- Numerical results.

The walking motion.

A step with a single support motion and a double support motion.

a)
b)
c)
d)
e)

a) Initial configuration of biped in single support. b) Intermediate configuration in single support. c) Final configuration in single support - initial one in double support. d) Intermediate configuration in double support. e) Final configuration in double support - initial one in the next single-support motion.

Mathematical model $1 / 2$.

Scheme of the biped and the assumption of the massless foot.

- assumption of the massless foot The weight of a humain foot is almost $0.600 \mathrm{~kg} \Rightarrow$ Their inertial effects are neglected.

Mathematical model

The dynamic motion and unilateral constraints.

- generalized vector

$$
\mathbf{x}=\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, x, y\right]^{\top} .
$$

- Mathematical model of the biped

$$
\begin{equation*}
\mathbf{A}(\mathbf{x}) \mathbf{x}+\mathbf{H}(\mathbf{x}, \dot{\mathbf{x}}) \dot{\mathbf{x}}+g \mathbf{G}(\mathbf{x})=\mathbf{D} \Gamma+\mathbf{J}_{\mathbf{r}_{1}}^{\top} \mathbf{r}_{1}+\mathbf{J}_{\mathbf{r}_{2}}^{\top} \mathbf{r}_{2} \tag{1}
\end{equation*}
$$

- The following constraint equations are correct when the front or/and rear leg is/are on the bearing surface.

$$
\begin{equation*}
\mathbf{J}_{\mathbf{r} \boldsymbol{}} \ddot{\mathrm{j}}+\dot{\mathbf{r}}_{i} \dot{\mathbf{x}}=\mathbf{0} \quad \text { for } i=1 \text { or/and } 2 . \tag{2}
\end{equation*}
$$

The single support

The main characteristics of the single support.

- Let leg 1 be the supporting leg:

$$
\begin{align*}
\mathbf{r}_{2} & =\mathbf{0} . \quad \text { No action ground reaction in foot } 2 \\
\Gamma_{i} & =0(i=1,2,3,4, \text { and } 6) . \quad \text { Ballistic motion } \\
\dot{V}_{\mathrm{a}_{1}} & =\mathbf{0} \text {. The stance foot should not move } \tag{3}\\
\Gamma_{5} & =I_{x} r_{1 y}+I_{y} r_{1 x} \quad \text { To control the trajectory CoP. }
\end{align*}
$$

- Nine scalar equations (model and constraints) to find the unknown variables ($\ddot{\mathbf{x}}, \Gamma_{5}$, and the two components of \mathbf{r}_{1}). \Rightarrow To overcome this difficulty The trajectory of the CoP is defined with a polynomial function in time $I_{x}(t)$.

$$
\left[\begin{array}{ccc}
\mathbf{A}(\mathbf{x}) & -\mathbf{d}_{5} l_{y}+\mathbf{j}_{\mathbf{r}_{11}}^{\top} & -\mathbf{d}_{5} l_{x}+\mathbf{j}_{\mathbf{r}_{12}}^{\top} \\
\mathbf{J}_{\mathbf{r}_{1}} & \mathbf{0}_{2 \times 1} & \mathbf{0}_{2 \times 1}
\end{array}\right]\left[\begin{array}{c}
\ddot{\mathbf{x}} \\
r_{1 x} \\
r_{1 y}
\end{array}\right]=\left[\begin{array}{c}
-\mathbf{H}(\mathbf{x}, \dot{\mathbf{x}}) \dot{\mathbf{x}}-g \mathbf{G}(\mathbf{x}) \\
-\dot{\mathbf{j}}_{\mathbf{r}_{1}} \dot{\mathbf{x}}
\end{array}\right]
$$

${ }_{3}^{4}$

The single support $2 / 3$

The trajectory of the CoP from the heel to the toe.

The single support

The Boundary value problem.

- The five initial velocities $\dot{q}_{i}(0)$, length of the step d and duration $T_{s s}$ of the single-support motion are calculated to reach the final configuration from the initial one and satisfying two velocities conditions.

- To avoid improper contact with the terrain at the initial moment of single support.

$$
\begin{equation*}
V_{\mathbf{a}_{2}}(0) \cdot \mathbf{a}_{\mathbf{2}} \mathbf{t}_{2}(0)=0 \tag{5}
\end{equation*}
$$

- No impact at the end of the single support.

$$
\begin{equation*}
V_{\mathbf{a}_{2}}\left(T_{S S}\right) \cdot \mathbf{a}_{2} \mathbf{h}_{2}\left(T_{S S}\right)=0 \tag{6}
\end{equation*}
$$

Double support motion:

The main characteristics of the double support motion.

- The two feet rotate:

- Trajectories of \mathbf{a}_{1} and \mathbf{a}_{2} are circles: Knowledge of $q_{p 1}$ and $q_{p 2} \Rightarrow x_{\mathbf{a}_{1}}, y_{\mathbf{a}_{1}}$, $x_{\mathrm{a}_{1}}$, and $y_{\mathrm{a}_{2}}$.
- Knowledge of $x_{a_{1}}, y_{a_{1}}, q_{1}$, and $q_{2} \Rightarrow x$ and y (DGM).
- Knowledge of $x, y, x_{\mathrm{a}_{2}}$, and $y_{\mathrm{a}_{2}} \Rightarrow q_{3}$ and q_{4} (IGM).
- Variables $q_{p 1}, q_{p 2}$ (orientations of feet), q_{1}, q_{2}, q_{5}, are defined with polynomial functions in time.
- 7 scalar equations; 10 unknown equations (6 Torques and 4 components of \mathbf{r}_{1} and \mathbf{r}_{2}).

Double support motion:

Equation to describe the double support motion.

- Equilibrium equations of the feet

$$
\Gamma_{5}=\left(x_{\mathbf{t}_{1}}-x_{\mathbf{a}_{1}}\right) r_{1 y}-\left(y_{\mathbf{t}_{1}}-y_{\mathbf{a}_{1}}\right) r_{1 x}, \quad \Gamma_{6}=\left(x_{\mathbf{h}_{2}}-x_{\mathbf{a}_{2}}\right) r_{2 y}-\left(y_{\mathbf{h}_{2}}-y_{\mathbf{a}_{2}}\right) r_{2 x} .
$$

- The horizontal component $r_{1 x}$ is defined with polynomial functions in time.
- \Rightarrow Motion equation.

$$
\left.\left.\begin{array}{l}
\mathbf{A}(\mathbf{x}) \ddot{\mathbf{x}}+\mathbf{H}(\mathbf{x}, \dot{\mathbf{x}}) \dot{\mathbf{x}}+g \mathbf{G}(\mathbf{x})-\left(\mathbf{j}_{\mathbf{r}_{11}}^{\top}-\mathbf{d}_{5}\left(y_{\mathbf{t}_{1}}-y_{\mathbf{a}_{1}}\right)\right) r_{1 x}= \\
{\left[\begin{array}{llll}
\mathbf{D}_{14} & \mathbf{j}_{\mathbf{r}_{12}}^{\top}+\mathbf{d}_{5}\left(x_{\mathbf{t}_{1}}-x_{\mathbf{a}_{1}}\right) & \mathbf{J}_{\mathbf{r}_{2}}^{\top}+\mathbf{d}_{6}\left[-\left(y_{\mathbf{h}_{2}}-y_{\mathrm{a}_{2}}\right)\right. & x_{\mathbf{h}_{2}}-x_{\mathbf{a}_{2}}
\end{array}\right]}
\end{array}\right]\left[\begin{array}{c}
\Gamma_{1} \\
\Gamma_{2} \\
\Gamma_{3} \\
\Gamma_{4} \\
r_{1 y} \\
r_{2 x} \\
r_{2 y}
\end{array}\right]\right)
$$

Numerical parameters

Physical parameters close to those of humans.

	Mass (kg)	Length (m)	Inertia moment $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$	Center of mass (m)
Human shin	$m_{s}=4.6$	$I_{s}=0.55$	$I_{s}=0.0521$	$s_{s}=0.324$
Human thigh	$m_{t}=8.6$	$I_{t}=0.45$	$I_{t}=0.75$	$s_{t}=0.18$
Human trunk	$m_{T}=48.6$	$I_{p}=0.75$	$I_{T}=11.3$	$s_{T}=0.386$
Foot, COP excursion	$m_{f}=0.0$	$I_{f}=0.04$ $I_{f}=0.07$ $I_{y}=0.07$	$I_{f}=0.00$	

Numerical parameters

The durations of the two phases.

- $T_{S S}=0.3506 \mathrm{~s} ; T_{D S}=0.1753 \mathrm{~s}\left(T_{D S}=\frac{T_{S S}}{2}\right)$.
- For $T_{D} S$ values lower than $\frac{T_{S S}}{2}$: Impossible to obtain a double support motion that satisfies the unilateral constraints.
- Percentage of the finite time double support motion, with respect to the complete cycle, which corresponds to two walking step: 17%
- This percentage is coherent with human data, see
- Rose, J., and Gamble, G. Human Walking, Third Edition. Lippincott Williams \& Wilkins, 2006.
- Winter, W. Biomechanics and Motor Control of Human Movement. Fourth Edition, John Wiley \& Sons, Inc., 2009.

Numerical results

The ground reactions acting in the two feet during the walking step.

Y. Aoustin ${ }^{1}$ and A. Formal'skii ${ }^{\mathbf{2}}$
$14 / 22$

Numerical results

Torque in the leg 1 during the walking step.

Orientation of the two feet during the double support motion.

Numerical results

Torques in the two ankles during the double support motion.

Y. Aoustin ${ }^{1}$ and A. Formal'skii ${ }^{\mathbf{2}}$
$17 / 22$

Numerical results

Joint angles in knees and hips for the two legs.

Numerical results 6/6

Torques in knees and hips of two legs during the double support motion.

M, 人从

Conclusion and perspectives

Conclusion

- A ballistic motion is define to design the single support..
- A torque applied in the ankle joint of the stance foot controls a trajectory of the CoP under the sole.
- Thanks to the conditions of the velocities we can any collision of the transfer leg with the ground and an impact at the end of the single support.
- A distribution in time of the double support allows to get a cyclic gait with the torques of finite magnitude.

Conclusion and perspectives

Perspectives

- One objective is to explore a starting phase that beginning with sequence of a finite time double support and a ballistic walking motion to reach a periodic motion and its dual problem with a stopping phase.
- A second objective is to extend the study about a passive exoskeleton to investigate how the reduce the torques proved by human.

nu vilikian
wet anyma

Thank you for your attention.

